Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Photoswitchable Supramolecular Polymer Networks. Toward Spatial and Temporal Control of Self-healing Function

Objective

Self healing polymers, i.e. materials which the ability to repair themselves, have emerged as an attractive alternative to traditional materials due to the advantages they offer to society in terms of durability, reliability and cost and energy efficiencies. A fruitful approach towards these novel materials is based on the introduction of supramolecular cross-links into polymer frameworks, which, due to their reversible and dynamic nature, can be dissociated and reconnected multiple times to heal the damaged area. However, polymer toughness and autonomous healing exhibit an inverse relationship and, for practical reasons, the healing process must be activated in conditions that are different from the working conditions, or otherwise the material becomes too soft. Such activation is typically carried out through thermal heating, which accelerates the dynamics of the non-covalent bonds and enhances polymer chain diffusion.
In LightHeal we plan to make a groundbreaking impact in the field of dynamic polymer networks by developing phtotoswitchable supramolecular cross-links that exploit the extraordinary attributes of Light as an external stimulus. Concretely, we want to be able to switch on/off cooperative noncovalent cross-links in polymer networks, so that the material can reversibly alternate, on demand, between a mechanically tough state and a soft, healable state. Moreover, we want to achieve such control with spatial precision, temporal precision, and wavelength orthogonality. For such goal, we will combine the knowledge of the host group in G-quadruplex polymer networks with the experience of the candidate in state-of-the art azobenzene photoswitches.
LightHeal introduces fundamental challenges and unprecedented approaches in the expanding field of stimuli-responsive polymer materials with “smart” functionalities, and constitutes the best research scenario for the candidate to learn from different fields and further develop his career.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

UNIVERSIDAD AUTONOMA DE MADRID
Net EU contribution
€ 165 312,96
Address
CALLE EINSTEIN 3 CIUDAD UNIV CANTOBLANCO RECTORADO
28049 Madrid
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data