Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Manganese Nitride based sub-THz Ultra High Frequency Spin Hall Nano Oscillators

Project description

Spin Hall nano-oscillators made with greener ferrimagnetic materials

Many radio protocols and applications will rely on frequencies well over 50 GHz. Spin Hall nano-oscillators (SHNOs) are capable of very high frequencies. They are also nanoscale in size, have ultra-fast and wide-frequency tunability, and are seen as candidates to replace CMOS-based oscillators. Replacing conventional ferromagnetic materials with ferrimagnets could exploit the full potential of high-frequency SHNOs. With the support of the Marie Skłodowska-Curie Actions programme, the MANGA project aims to use manganese nitrides as greener ferrimagnetic materials to produce SHNOs. The team will study them with advanced optical techniques and integrate layers of other magnetic materials, characterising the spin sources and the oscillations they generate in SHNO devices.

Objective

Spin Hall nano-oscillators(SHNOs) have garnered significant attention in recent years due to their high frequencies, nanoscale size, ultra-fast/wide frequency tunability, and potential to replace CMOS-based oscillators. Here, an input current with spin hall effect is used to generate oscillations in a magnetic material ranging from a few hundreds of MHz to tens of GHz. As many existing and future radio protocols and applications will use frequencies well above 50 GHz, pushing the SHNO operating frequencies much higher would be of tremendous value. One way to increase the operating frequencies of SHNOs is by replacing the magnetic materials from ferromagnets to ferrimagnets. The magnetic properties of ferrimagnets make it a perfect candidate to be used for high frequency SHNOs. MANGA aims to use the Manganese Nitride (Mn4N) family of ferrimagnetic materials made up of light, abundant, cheap and greener elements to realise different types of SHNOs. It will demonstrate sub-THz ultra high frequency SHNOs followed by high frequency exchange spring oscillators by coupling the Mn4N system with other ferromagnetic materials such as Ni/NiFe/CoFeB. The Mn4N system will be studied as the spin source layer to generate oscillations in other magnetic layers. The first objective in MANGA of sub-THz ultra high frequency oscillators will be done by nanofabrication of nanoscale SHNO devices in Mn4N system which will be studied with the help of advanced optical techniques such as Brillouin Light Scattering(BLS) microscopy. For the next objective SHNO devices will be fabricated after the deposition of other magnetic layers on Mn4N layer and studied with various magnetic characterization techniques and BLS microscopy. For the last objective a Copper layer will be inserted between the Mn4N layer another magnetic layer. The spin source properties will be studied with the help of rectangular bar devices and oscillations will be studied with the SHNO devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

GOETEBORGS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 206 887,68
Address
VASAPARKEN
405 30 Goeteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0