Project description
Understanding co-infections in respiratory disease
Respiratory tract infections are often caused by multiple pathogens rather than one, with co-infections being more common than typically perceived. Considering that respiratory disease caused by airborne pathogens causes significant morbidity and economic losses globally, there is a need to study the impact of co-infections. Funded by the Marie Skłodowska-Curie Actions programme, the RespiriCO project will study the in vitro and in vivo effects of co-infections by parasites, viruses and bacteria. Special emphasis will be given on the tissue microenvironment and host-pathogen interactions. Researchers will also investigate how protozoan infections affect vaccine efficacy and chemotherapy outcomes, ultimately enhancing diagnostic and prognostic techniques as well as treatment.
Objective
Despite the concept that infectious diseases are usually caused by a single pathogen, in reality, we are constantly challenged by multiple pathogens and growing evidence indicates that co-infections are a much more common event than clinically perceived. The respiratory tract is the first point of contact with airborne pathogens and the most common site for infections. Hence, human respiratory infections contribute to substantial morbidity and economic losses worldwide, resulting in approximately 2.5 million deaths each year. Recent findings have shed light on a crucial factor in the severity of respiratory infections: the role of co-infections. Considering the public health importance of respiratory infections and the scarcity of research on the impact of co-infections in the balance of immune defences, this project proposes to study the in vitro and in vivo effects of diverse parasitic, viral, and bacterial co-infections on different types of immune cells in the lungs, and comprehensively characterize tissue local microenvironment and host-pathogen interactions. Additionally, we will investigate the immunomodulatory effects of protozoan infections on vaccines and chemotherapy treatments and their impact on the protection against targeted pathogens. Objectives include: elucidate the molecular mechanisms underlying immunological responses in the lungs and the susceptibility to co-infections; investigate altered immune responses of vaccines and the changes in the response to co-infection after chemotherapy of the primary infection. In the end, this study will allow deeper understanding of respiratory co-infections that could pave the way for the development of improved diagnostic and prognostic techniques, as well as the potential for proposing supportive treatments and vaccines. Notwithstanding, the development of this project will open up new avenues for future co-infection research and propel the fellow towards establishment as a successful independent researcher.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
2000 Antwerpen
Belgium