Project description
Advanced, light-based catalysis
When certain solid surfaces are illuminated with light, photons are absorbed by molecules or atoms on the surface, making them more reactive. This may lead to bond breaking, bond formation or rearrangement of atoms in solid surfaces, which means they can act as catalysts. A prime example is the use of titanium dioxide in environmental cleanup and renewable energy applications. Funded by the Marie Skłodowska-Curie Actions programme, the PlasmOSS project focuses on plasmon-mediated chemical reactions that employ plasmonic nanoparticles as catalysts to drive chemical reactions under light irradiation. The goal is to investigate the underlying mechanisms and generate chemical hotspots with improved selectivity and efficiency.
Objective
Photochemistry on solid surfaces is a promising candidate for overcoming the current limitations of on-surface synthesis (OSS), including the constraints of metallic substrates, poor spatiotemporal control, and demand for high temperatures. However, this nascent approach has evidenced to date relatively modest efficiencies compared to thermally induced reactions. Concomitantly, the field of plasmon-mediated chemical reactions (PMCRs) has experienced pronounced growth. PMCRs rely on the ability of plasmonic nanostructures to harness the advantages of milder visible light and efficiently transforming it into chemical energy. The rapid progress in PMCRs can be attributed to the development of novel methodologies for engineering the nano-optical properties of the localized surface plasmon resonance (LSPR). In this context, achieving precise atomic-level control over how reactants interact with plasmonic catalytic substrates holds the potential to drastically increase the chemoselectivity, efficacy and sustainability of reactions.
The scientific objective of this proposal is to combine my expertise on scanning probe microscopy (SPM) and plasmonic nanocavities with the large experience of the host in OSS, targeting to direct PMCRs on surfaces at the atomic scale. Specifically, this proposal seeks to investigate three model photodimerization reactions, exploring the conditions under which the SPM-controlled optical hotspot -used for tip-enhanced Raman spectromicroscopy- can be transformed into a chemical hotspot with improved selectivity and efficiency. Furthermore, the goal is to elucidate the mechanisms governing tip-induced PMCRs, with the ultimate aim of controlling the fabrication of low-dimensional extended polymers with molecular precision using visible light. The synergistic integration of these innovative methodologies will decisively contribute to the successful realization of the project, remarkably enhancing my career trajectory and personal development.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural scienceschemical sciencesphysical chemistryphotochemistry
- natural scienceschemical sciencespolymer sciences
- natural sciencesphysical sciencesopticsmicroscopy
You need to log in or register to use this function
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
28006 Madrid
Spain