Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Detecting and Distinguishing Majorana Modes through Atomic Scale Shot Noise

Objective

An exciting area of research in quantum condensed matter physics involves the exploration of Majorana bound states (MBS) to create topologically protected qubits for fault-tolerant quantum computing. In the quest for experimental evidence of these quasiparticles, the most frequently observed indication of MBS is considered as a peak in the differential conductance spectra at zero bias voltage. While this observation could be easily detected in scanning tunneling microscopy/spectroscopy experiments, it does not serve as a piece of conclusive evidence for the Majorana nature of a state as other topologically trivial bound states, such as Yu-Shiba-Rusinov states, can also exhibit the same zero-bias conductance peak. In this direction, recent theoretical investigations have extensively examined how shot noise at atomic could serve as a distinctive tool to differentiate between MBS and trivial bound states in vortex matter and nanowires. However, experimental verification of these theories has not been feasible so far due to the underlying challenge of measuring shot noise with high enough sensitivity at a nanometer resolution. Although experimentally challenging, in this project we will combine atomically resolved differential conductance and shot noise together by using a home-built shot-noise scanning tunneling microscope (SN-STM). The unprecedented power of this technique will be exploited to measure shot noise which provides direct evidence to distinguish the MBS from any conventional in-gap mode. We propose to investigate a couple of different scenarios such as single atomic impurities and vortex cores in a variety of iron-based superconducting quantum material, magnetic nanostructure (1D chains) coupled to an s-wave superconductor.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 211 754,88
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0