Project description
Enhancing theoretical predictions to fully exploit the high-luminosity Large Hadron Collider
The high-luminosity Large Hadron Collider will make a step change in the potential for new discoveries after 2029 thanks to unprecedented precision enabled by a tremendous increase in the number of collisions in a given amount of time (luminosity). In parallel, scientists are increasing the precision of their predictions to prepare for planning of experiments to test them. Resummation of logarithmically enhanced terms plays a crucial role in achieving accurate phenomenological predictions and higher-order fixed-order predictions. With the support of the Marie Skłodowska-Curie Actions programme, the HOPSRES project aims to significantly enhance next-to-next-to-leading logarithmic (NNLL) resummation, enabling novel applications and the first complete dipole parton shower with validated NNLL accuracy.
Objective
With the upcoming high-luminosity phase of the Large Hadron Collider (LHC), the high energy physics community is gearing up to explore the fundamental building blocks of our universe with unprecedented precision. Consequently, the demand for precise and widely available theoretical predictions is at its highest level. Resummation of logarithmically enhanced terms plays a crucial role in achieving accurate phenomenological predictions, in addition to higher-order fixed-order predictions.
During my fellowship, I will to work on the design, implementation, and application of tools dedicated to Next-to-Next-to-Leading Logarithmic (NNLL) resummation, including novel applications, as well as the first complete dipole parton shower with validated NNLL accuracy. Both represent critical tasks to meet the accuracy needs of the next phase of the LHC and of future collider experiments.
As a first step, I intend to extend the established CAESAR formalism for NLL resummation to NNLL, inside a comprehensive framework within the Sherpa event generator, one of the major simulation tools used by the LHC experiments. The Sherpa-CAESAR framework will then be extended to accommodate hadron collider environments like the LHC. The integration of this baseline for NNLL resummation serves as a foundation for the following efforts.
Subsequently, I plan to enhance the recently introduced Alaric parton shower with inclusion of established Next-To-Next-To-Leading Order (NLO) splitting functions. Ultimately, I will utilise the tools and methods developed in the initial phase to validate the NNLL accuracy of the enhanced Alaric parton shower.
By the projects conclusion, not only will a significant enhancement in NNLL resummation have been realised, but novel novel strategies for NLO subtraction and parton shower matching will emerge. This project stands to make a substantial contribution to the advancement of particle physics and the successful execution of experiments at the LHC and beyond.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
1211 Meyrin
Switzerland