Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Constellation optimization for continuous variable QKD

Project description

Cutting-edge quantum key distribution techniques to boost data exchange security

Maintaining secure communication between parties is crucial in today’s increasingly interconnected world. Quantum key distribution (QKD) protocols offer a promising solution by creating secure keys through quantum mechanics. Funded by the Marie Sklodowska-Curie Actions programme, the COCoVaQ project aims to improve data exchange security by optimising quantum state transmission in QKD, focusing on continuous variable QKD (CV-QKD). Researchers will develop new algorithms for constellation shaping and enhance security proofs to enhance cryptographic system efficiency and security. They will also address the lack of advanced tools in CV-QKD protocols. The goal is to significantly reduce attack vulnerabilities, enabling high-rate, long-distance secret key exchange. Planned demonstrations will bridge the gap between theory and real-world applications.

Objective

In today's highly interconnected world, secure communication between distant parties is paramount. Quantum Key Distribution (QKD) protocols, rooted in quantum mechanics, offer a promising solution to this challenge by ensuring the generation of secure keys with high data exchange rates. This project objectives seek to advance the state of secure data exchange by optimizing quantum state transmission within QKD protocols. Focusing on Continuous Variable QKD (CV-QKD), we aim to pioneer novel algorithms that not only bolster security but also enhance cryptographic system efficiency. By shaping constellations and fortifying security proofs, COCoVaQ provides imperative contributions for secure communication, safeguarding sensitive digital information.
Currently, state-of-the-art CV-QKD protocols lack the sophisticated tools developed within the scope of optical communication systems, such as adaptive methods for optimal constellation optimization, which enable the transmission of secret keys at a high rate. Additionally, existing security analyses of CV QKD protocols with practical, discrete modulation often overlook critical symmetry aspects of the transmission algorithms that are imperative to establish security against arbitrary attacks.
In response, our project endeavors to devise groundbreaking algorithms for constellation shaping and introduce symmetry properties to CV-QKD protocols employing discrete modulation with provable security. Notably, discrete modulation typically results in a substantial penalty on the resilience against attacks. With the aid of constellation optimization, this project aims at mitigating this penalty by between 10 and 20 orders of magnitude, ensuring a theoretically secure exchange of secret keys of high rate at long distances. Finally, COCoVaQ will showcase practical demonstrations of the entire system, bridging the gap between theory and real-world applications.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 230 774,40
Address
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0