Project description
Sustainable solution for PFAS removal from water
Energy consumption is rising, natural resources are running out, and pollution is damaging our environment. One of the major pollutants today is PFAS. These are ‘forever chemicals’ that do not break down naturally. These substances are harmful to health and can be found in water, air, and soil, causing widespread environmental damage. Current methods for removing PFAS from water have serious limitations, such as regenerating adsorbents and producing secondary waste. Supported by the Marie Skłodowska-Curie Actions programme, the PhotoClean project will create nanocage adsorbents that can remove PFAS from water. These adsorbents use visible light to break down PFAS in a safe, environmentally friendly way, offering a more sustainable solution for cleaning our water.
Objective
Increasing energy consumption, depletion of natural resources, and environmental pollution are nowadays among the biggest economic and social challenges. Per- and polyfluoroalkyl substances (PFAS), also known as forever chemicals, are persistent emerging pollutants not naturally degraded in the environment. PFAS are anthropogenic compounds with harmful health effects, inert and resistant to heat, and nowadays found in water, air, and soil, thus posing a heavy impact on our environment. Adsorption on activated carbon, ion-exchange resins, cyclodextrins, and nanofiltration are the methods currently used or under study for PFAS removal from water. However, critical gaps, such as the adsorbent regeneration, affinity, production of secondary waste, analytical method limitations, and efficient PFAS degradation pathways are major challenges. PhotoClean aims to synthesize novel palladium functionalized, solvent-responsive nanocage adsorbents able to remove PFAS from water. The nanocages will promote rapid PFAS photodegradation, being excited by visible-light to a photoexcited state able to interact with PFAS through a single electron transfer. Depending on the energy of the photoexcited state, PFAS decomposition is expected to be initiated either through oxidative or reductive events and be sustained by the formation of radicals. The new approach proposed by PhotoClean is based on the development of reusable adsorbent cages and the exploitation of visible-light as the energy source to activate PFAS decomposition; it thus constitutes an environmentally sustainable strategy for PFAS removal and degradation. The project will contribute to understand fundamental structure-property relationships of PFAS adsorption on nanoporous organic cages and integrate photodegradation of PFAS with catalytic activity. The action has the potential to revolutionize methods for PFAS removal from water and tackles a variety of scientific and societal challenges of environmental importance.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences earth and related environmental sciences environmental sciences pollution
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
35122 PADOVA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.