Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Identifying ChloroPlast Ribosome rescue mechanisms under genetically induced and environmental stresses

Project description

Protecting photosynthesis from stress

Photosynthesis, the process that sustains life on Earth, relies on healthy chloroplasts in plants. These organelles have their own genetic system and ribosomes, similar to bacteria, that produce proteins for photosynthesis. However, ribosomes can stall due to genetic errors or environmental stress, disrupting protein production. While other organisms have mechanisms to rescue stalled ribosomes, how this works in chloroplasts is not well understood. With the support of the Marie Skłodowska-Curie Actions programme, the CPRrescue project is studying these rescue mechanisms. Researchers will focus on ArfB, the only known rescue factor in chloroplasts, and search for new proteins involved in ribosome rescue. Their findings could improve photosynthesis and help develop stronger, more productive crops.

Objective

Photosynthesis produces all organic material on Earth. In plants, photosynthesis depends on active protein synthesis in chloroplasts to set up photosynthetic complexes. Due to their endosymbiotic origin (from cyanobacteria), chloroplasts contain an independent genome and internal transcription and translation machinery with bacterial type 70S-like ribosomes. Ribosomes may stall due to transcription errors, misprocessed transcripts, translation mistakes, missing tRNA, mutations, or strong mRNA-folding. Ribosome stalling ties up the translation machinery, it is persistent at trace levels but can be exacerbated by environmental stress. Therefore, ribosome rescue mechanisms have evolved in all life domains to resolve stalled ribosomes. Despite its critical role in maintaining photosynthesis and extensive study in eukaryotes and bacteria, little is known about ribosome rescue mechanisms in chloroplasts.
In this project, we will characterise chloroplast rescue factors. First, we will examine ArfB, the only known ribosome rescue mechanism ortholog found in chloroplasts by exposing ArfB knockout mutants to translation-stalling inducing stresses, investigating conserved protein motifs, subcellular localisation and overexpression. Additionally, we will study ribosome-stalling effects on chloroplast translation, photosynthesis and metabolism by genetically modifying the chloroplast translation machinery. Finally, we will directly search for novel ribosome rescue factors by identifying proteins physically engaged with stalled chloroplast ribosomes and evaluating their function.
Elucidating chloroplast ribosome rescue mechanisms will improve our understanding of the complete photosynthesis support apparatus and inform future biotechnology and crop improvement. Following this fellowship I will leverage the knowledge, methods and transferable skills I acquire to study chloroplast genetics, translation and nuclear-chloroplast interactions in my future lab.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 189 687,36
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0