Project description
Faster detection of chronic diseases
Early detection of chronic diseases is vital for better treatment outcomes, but current methods are slow and expensive. In vivo diagnostic approaches can speed up some processes, but they still have long delays and are invasive. A major challenge is reducing turnaround times, which can take over 10 000 minutes. Supported by the Marie Skłodowska-Curie Actions programme, the BeNiFIt project will use tiny, in-body nanoscale communications (IBNC). This technology will make diagnostics faster, cheaper, and less invasive by reducing delays to just a few minutes. BeNiFIt will also increase detection accuracy, using nanomachines with biosensors to identify biomarkers with high precision. This breakthrough has the potential to transform healthcare by providing real-time, efficient diagnostics.
Objective
Early detection is crucial in improving treatment outcomes and alleviating the burden of chronic diseases, as emphasized by the EU Mission: Cancer. In vivo dianosgtic approaches have been shown to eliminate a couple of post-processing stages, but no significant reduction in turnaround delays has been reported, in addition to being costly, bulky, and invasive. The next natural step in innovation would be to reduce turnaround delays from the present best of 10,000 minutes to within a few tens of minutes, a 1000X improvement, which BeNiFIt aims to introduce. The goal of the BeNiFIt project is to show that intra-body nanoscale communications (IBNC) can be used to make in-vivo diagnostics possible. This will pave the way for more advanced early detection and real-time monitoring methods that are minimally invasive, low-cost, and have small turnaround delays. Through BeNiFIt, I will demonstrate the competence of IBNC for in vivo detection of biomarkers with high accuracy by using nanomachines equipped with biosensors. A cooperative sensing approach will be developed to maximize the sensitivity and specificity of the biosensors, thus reducing the number of false positives/negatives caused by the presence of other molecules. In addition, I will design an approach to integrating the sensing and communication hardware to meet the hardware requirements of nanomachines. A near-field magnetism-based system and passive communication architecture will be implemented to ensure ultra-high safety and energy efficiency. Lastly, an open-source system-level simulator will be developed, spanning microscopic to macroscopic scales, to analyze the impact of the design choices on the system’s performance. The KPI targets of BeNiFIt include >95% detection accuracy and a 10X reduction in treatment costs, besides the 1000X reduction in turnaround delays. These outstanding performances are set to disrupt the healthcare industry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- medical and health sciences clinical medicine oncology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08034 Barcelona
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.