Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Flexible electrodes based on a zeolitic imidazolate framework and cellulose nanofibers composite: towards wearable energy storage (FLEXSTORE)

Project description

Wearable energy storage with flexible supercapacitors

As electronic modules shrink in size, the demand for compact charge storage devices, such as batteries and supercapacitors, faces significant challenges. This bottleneck limits advancements in wearable energy storage and flexible, pollution-free technologies. Supercapacitors, known for their extended cycle life and high power density, offer a promising solution. Supported by the Marie Skłodowska-Curie Actions programme, the FLEXSTORE project addresses this need by exploring the potential of cellulose nanofibres (CNFs) integrated with a zeolitic imidazole framework (ZIF). This innovative approach promises to enhance charge storage performance, ensure uniform distribution of ZIF nanocrystals, and design flexible solid-state gel electrolytes, paving the way for lightweight, flexible energy storage solutions tailored for the modern market.

Objective

The progressive size diminution of electronic modules are undergoing bottlenecks in dwindling charge storage devices i.e. batteries and supercapacitors, constraining their development into wearable energy storage and flexible pollution free technologies. The inherent extended cycle life, rapid charge/discharge, and high power density of supercapacitors rank them superior over other energy storage systems. In modern market of zero-pollution energy devices, recently flexible and lightweight formula are trending to meet the current requirement of wearable energy storage. In this context, cellulose nanofiber (CNFs) incorporated zeolitic imidazole framework (ZIF) as hybridization have the potential to meet this demand, as they are core of active electrode materials for flexible supercapacitors and texturally tailored to demonstrate flexible/foldable properties. Thus, the exploration of the ZIF on CNF as a multifunctional hybrid material will provide high surface area and dispersion stability, while demonstrating superior analytical performance. FLEXSTOR will elucidate: 1) uniform distribution of ZIF nanocrystals on interface of CNF as conductive electrode 2) the rational design of polymer solid-state gel electrolyte in form of flexible solid-state supercapacitor and 3) the enhanced charge storage performance withstanding the mechanical deformation. With these perspectives, FLEXSTOR will introduce flexible and lightweight active compounds for wearable energy storage devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

UNIVERSITEIT ANTWERPEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 191 760,00
Address
PRINSSTRAAT 13
2000 Antwerpen
Belgium

See on map

Region
Vlaams Gewest Prov. Antwerpen Arr. Antwerpen
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (2)

My booklet 0 0