Objective
Fiber photometry allows the activity of molecularly defined neuronal populations to be measured in freely behaving animals. The method is based on an implanted optical fiber through which fluorescent genetically encoded indicators of cellular activity, metabolites or signaling molecules can be monitored and is widely used in neuroscience research. However, conventional photometry systems are not flexible and typically limited to a fixed configuration of one or two readout channels. We will develop a new product based on a radically redesigned concept of fiber photometry called Fused Fiber Photometry (FFP). This new design is highly flexible and allows the fiber photometry setup to be easily reconfigured to a large number of spectral configurations at low cost. Furthermore, by combining spectral detection with spectral control of the fluorescence excitation signal, we will realize hyperspectral fiber photometry. Fused fiber photometry and hyperspectral photometry have the potential to gain large attraction in the academic research, industrial R&D and manufacturing processes, and in medical diagnosis. The technique has therefore high commercialization potential and a competitive advantage over existing commercial systems. It allows companies to offer a simple, out-of-the-box, turnkey system that can be easily modified and upgraded to meet user requirements. Our goal is to develop a commercializable hyperspectral fiber photometry system based on FFP. We will work hand in hand with established industrial partners to bring the system to market. By realizing HyFiPhotometry in this PoC project, want to exploit the full potential of hyperspectral photometry and demonstrate the feasibility of the basic idea. In the long term, we aim it to drive inventiveness in the fields of biomedical research, medicine and beyond. In this way, we expect to move our product from the niche of neuroscience to a wide range of applications that are highly relevant to society.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- engineering and technology materials engineering fibers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-POC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69117 Heidelberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.