Project description
A new approach to nanoscale optical investigations
Exploring the optical responses of materials at the nanoscale is vital for fields such as quantum-sensitive measurement and optoelectronic devices. Current methods provide high spatial resolution but struggle with controlling optical excitations and observing their behaviour over time. Monitoring these dynamics requires both fine spatial and extremely fast temporal resolution, which existing techniques often cannot achieve. This gap limits our understanding of crucial processes like decoherence in various materials. The ERC-funded UltraCoherentCL project aims to bridge this gap by developing a novel electron-probe technique. By integrating electron-driven photon sources with cathodoluminescence spectroscopy, the project seeks to visualise decoherence dynamics in quantum emitters, two-dimensional materials, and photovoltaic devices.
Objective
"Exploring the optical responses of materials at the nanoscale is central to various fields of study, including quantum-sensitive measurement metrologies, photovoltaics, and optoelectronic devices. Electron probes have established themselves as important tools for visualizing nano-optical excitations with unprecedented spatial resolution. However, controlling optical excitations and exploring their decoherence dynamics require visualizing the dynamics of the nano-world at sub-femtosecond temporal resolutions.
Within the context of our ERC Starting Grant ""NanoBeam,"" we have established and proposed an electron-probe technique that not only allows us to explore dynamics at nanometer spatial and femtosecond temporal resolutions but also does so at a low cost. Unlike state-of-the-art ultrafast electron microscopy, our method does not rely on external laser excitations but rather on internal electron-driven photon sources.
To visualize the decoherence dynamics in a variety of systems, including quantum emitters and networks, optical excitations of two-dimensional materials, and semiconducting optoelectronic devices, we plan to merge the electron-driven photon sources with a cathodoluminescence spectroscopy setup based on optical fiber technology. We will design piezo stages and sample holders that enable precise alignment and tuning of the sample, electron-driven photon sources, and fibers inside the microscope while efficiently collecting cathodoluminescence photons.
Our electron-driven photon sources are designed to facilitate a high photon yield, allowing for optimal investigation of nonlinear processes. The instrument will be tested and verified for applications in mapping the decoherence dynamics of quantum emitters coupled to photonic structures, optical excitations in two-dimensional materials, and charge transfer dynamics in photovoltaic devices."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences theoretical physics particle physics photons
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-POC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
24118 Kiel
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.