Project description
Engineering thermal radiation
Thermal emission is a key process in energy transport and temperature management, but it is hard to control. Its random nature leads to a broadband spectrum that lacks directionality and polarisation. As a result, many applications in science and engineering face challenges and limitations. In this context, the ERC-funded TREAT project aims to develop a new approach to manipulate thermal radiation properties. By combining time-varying and hyperbolic materials, TREAT's approach seeks to overcome the constraints of existing laws governing thermal emission. TREAT addresses fundamental aspects of thermal emission physics to enable active control over the spectrum and directionality, paving the way for advancements in radiative cooling, energy harvesting and optoelectronics.
Objective
Thermal emission is a fundamental and ubiquitous process of energy and entropy transport, impacting science and engineering in various way. Yet, its stochastic nature, expressed in a broadband spectrum, lack of polarization and directionality, severely limits its control and manipulation.
TREAT aims at introducing a novel method for engineering the radiative heat transport and achieving unprecedented dynamical control over the spectrum and the momentum of thermal radiation.
To achieve this goal, I propose to combine two classes of emergent materials: time-varying epsilon-near zero (ENZ) media and hyperbolic materials (HMs). The time modulation of ENZ media will allow to overcome the fundamental limits to thermal emission set by the Planck’s and Stefan-Boltzmann’s laws and achieve active control over its properties. While the HMs, will enable to extract and guide the intense thermal radiation confined at the emitter surface, i.e. in its near-field.
TREAT objectives address three intriguing questions: i) Can we create a time-varying media with ad hoc time modulation? ii) Can we manipulate thermal emission beyond the Planck’s law using the time-modulation? iii) Can we improve our control of the radiative heat flow in the near-field? Answering these questions requires the combination of expertise in nanophotonics and ultrafast science and perfectly suits my scientific profile.
TREAT specifically targets the thermal emission engineering in the transparency window of Earth atmosphere, relevant for radiative cooling, and the development of novel coherent thermal sources in the THz range. TREAT will provide a fundamental advance to our understanding of thermal fields, beyond fluctuational electrodynamics, and a novel method for engineering the radiative heat flux, anticipating significant impacts in several applications of thermal light that would benefit from the active control of its properties, such as radiative cooling, energy harvesting, and optoelectronics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- natural sciences physical sciences electromagnetism and electronics optoelectronics
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures
- engineering and technology nanotechnology nanophotonics
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
- natural sciences physical sciences optics spectroscopy
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.