Project description
Revealing hidden phases in quantum materials by imaging topological defects
To realise the full potential of quantum materials, it is necessary to access their higher-energy hidden phases, which are not thermally accessible. This is possible through ultrafast laser excitation, but these light-induced phases only last for hundreds of picoseconds. Topology may provide a solution to stabilising these phases as the ultrafast phase transitions induced by laser pulses naturally generate topological defects. So far, however, imaging of such short-lived nanometre scale defects has been out of reach. To resolve this, the ERC-funded KnotSeen project will carry out real space imaging of topological defects in light-induced phases using coherent XUV imaging methods. It aims to uncover the mechanisms by which topological defects control light-induced phases, providing the means to stabilise and control them.
Objective
Quantum materials host many exotic and useful phases, and harnessing these states has spurred tremendous research effort. However, the full potential of quantum materials lies in the rich landscape of higher-energy hidden phases, those which are not thermally accessible. Ultrafast laser excitation has recently emerged as a way access these hidden phases, leading to the idea of re-writing material properties on demand, but these states usually only survive for hundreds of picoseconds. Thus a key outstanding question remains: how can we stabilize light-induced phases?
One key mechanism which can stabilize a phase is topology. The ultrafast phase transitions induced by femtosecond laser pulses naturally lead to the generation of topological defects. These defects, which can only relax after propagating until they encounter another topological defect, could either offer a route to stabilizing light-induced phases or impede their formation, and have been invoked in both contexts to explain many observations. However, actually imaging these nanometer scale defects on the femtosecond to nanosecond timescales required for light-induced phases has not been possible, and so the role of topological defects in light-induced phases remains unclear.
In KnotSeen I will perform the first real space imaging of topological defects in light-induced phases using coherent XUV imaging methods, which provide the necessary spatial, temporal, and spectral resolution to map topological defects at the nanoscale and out of equilibrium. I will map the creation, propagation, and destruction of topological defects in two important cases: quenched superconductivity in the cuprates and light-induced phases in the manganites. A novel data analysis approach will be used to distinguish repeatable from stochastic dynamics at the nanoscale. KnotSeen will reveal the mechanisms by which topological defects control light-induced phases, enabling new tools to stabilize and selectively control them.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics topology
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28049 Madrid
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.