Objective
A defossilized global energy ecosystem hinges on efficient conversion between renewable electrical energy and chemical energy stored in molecules. This conversion requires precious catalysts to drive relevant reactions at practical rates. Many catalysts are employed in the form of nanoparticles (NP) dispersed on support materials. All relevant reactions occur in a nanoscale region at the interface between the solid catalyst and an electrolyte solution, i.e. an electric double layer (EDL).
Our current knowledge of EDL is essentially limited to planar electrodes with a single EDL, whereas supported NP catalysts (SNPC) exhibit radically different EDL characteristics, featuring overlap of individual EDLs around the NPs and the adjacent support material. This knowledge gap, concerning crucial local reaction conditions within the EDL, prevents effectively transferring knowledge obtained at planar electrodes to performance improvements of SNPC.
MESO-CAT aims at launching the mesoscopic (1~100 nm) science of overlapping EDLs in SNPC and unravelling the influence of overlapping EDLs on structure-activity relationship of SNPC. MESO-CAT will address three foundational questions in electrocatalysis of SNPC using theoretical methods in an interaction loop with experimentalists. First, how are the overlapping EDLs formed under realistic conditions? This will be studied using a unique theoretical approach for mesoscale EDLs with both quantum mechanical electrons and classical electrolyte particles treated on equal footing. Second, how do overlapping EDLs influence elementary electron transfer kinetics? This will be unravelled using a model Hamiltonian for proton-coupled electron transfer considering various EDL effects. Third, how do overlapping EDLs influence the overall structure-activity relationship? This will lay the groundwork for transformative advancements in electrochemical energy conversion via regulating the mesoscale EDL effects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis electrocatalysis
- engineering and technology nanotechnology nano-materials
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
52428 JULICH
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.