Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Tuning Heat Transport in 2D Materials with Defects

Project description

Managing heat in defective atomically thin materials

As electronics march towards miniaturisation, they face a challenge: Joule heating. This inevitable heat generation jeopardises the performance of densely packed circuits. Understanding heat transport at the nanometre scale is crucial for designing advanced electronics, particularly using promising new materials like two-dimensional (2D) structures. However, our understanding of how individual atomic-scale defects (ubiquitous in materials) affect heat propagation remains limited due to the constraints of current thermal imaging techniques. In this context, the ERC-funded HeaT2Defects project seeks to bridge this gap by developing innovative imaging methods that leverage atomic force microscopy and Raman spectroscopy. This research aims to enhance our understanding of heat transport and unlock the potential of 2D materials for superior thermal management solutions.

Objective

The unstoppable race towards miniaturization is pushing the limits of electronics. This has to be conciliated with the inevitable Joule heating that affects all electronic devices, ultimately compromising miniaturization itself, as denser circuits require improved thermal management. Understanding and eventually controlling heat transport at the nanometer scale will lay the foundation for the design of present and future electronics, where the use of complex architectures and new nanomaterials, such as two-dimensional (2D) materials, holds a great potential. At such scales, atomic-scale defects, which are present everywhere in nature, play a fundamental role as just a single defect can greatly impact the properties of materials. However, our knowledge of the influence of an individual defect on heat propagation is surprisingly scarce. This is partly due to the limited spatial resolution of state-of-the-art thermal imaging.
HeaT2Defects aims to explore the fundamental properties of matter at a much smaller scale than is currently possible, engineering the influence of defects (namely vacancies, ripples and unconventional stacking) on heat transport of 2D devices. To this end, hinging on my extensive experience in scanning probe microscopy, I will develop an imaging technique with pioneering advances based on atomic force microscopy (AFM), Raman spectroscopy and nanoheater engineering. The versatility and resolution of AFM plus the thermal capabilities of Raman will allow thermal mapping with nm precision, improving state-of-the-art resolution by one order of magnitude. This will enable a deep understanding of the influence of defects on heat transport, and ultimately the engineering of the striking properties of 2D materials as thermal management components, vital to avoid energy waste and device malfunction. Far-reaching implications are expected, both from the profound impact of heat transport in many scenarios and from the technological developments.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-STG

See all projects funded under this call

Host institution

UNIVERSIDAD AUTONOMA DE MADRID
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
CALLE EINSTEIN 3 CIUDAD UNIV CANTOBLANCO RECTORADO
28049 MADRID
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0