Project description
Innovative multi-stable meta-structures pave the way to autonomous computational sensors
Accelerating expansion of the IoT and the need for greater computational power at the edge for greater processing speed and data integrity requires ‘smarter’ micro-electromechanical systems (MEMS) with edge computation and in-memory programming. These MEMS should assimilate sensory information for improved autonomy and efficiency. The ERC-funded MMS project aims to develop a new type of smart structure – ‘meta-structures’ – for autonomous sensors with built-in memory and computational abilities for this purpose. These MS will be based on a recent discovery showing they can have three stable equilibria in contrast to conventional mono- or bi-stable structures, paving the way to a new class of MEMS with radically new capabilities.
Objective
Sensory input in integrated systems is expected to increase with the entrance of AI and Internet-of-Things, requiring systems to become efficient and autonomous. The proposed research aims to introduce and study a new type of smart structure, dubbed meta-structures (MS), composed of repeating a unit cell to create a structure with new abilities such as multistability, non-volatility, and configurability. Such structures can be used to design autonomous sensors with built-in memory and computational abilities, allowing the formation of a new class of smart micro-electromechanical systems (MEMS) with edge computation and in-memory programming (IMP). In the aggregate, such smart sensors can lessen the dependency on a CPU and increase the autonomy of an overall system, while enabling distributed and parallel computations. Current MEMS-based structures are mono- or bistable, and as such are limited to registering one or two values in a sensor/mechanical memory/logical gate. However, recent studies have shown that an MS can break free from a two-bit structure. Indeed, in a recent breakthrough, we have shown that in the presence of electrostatic actuation, a micro-MS becomes multi-valued, with three stable equilibria, thus opening a gateway to a paradigm shift that goes beyond the study of new structures, to the formation of new class of MEMS. This new class of MEMS will be able to incorporate mechanical-based computation with IMP capabilities. Such an unconventional approach has the potential to augment traditional capabilities, introducing new abilities such as reduced leakage and power consumption, reconfigurability, decreased footprint, as well as compatibility with harsh environments (i.e. high temperatures or electromagnetic radiation), as well as reversible computing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarecomputer processors
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
69978 Tel Aviv
Israel