Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Glacial sculpture in Mars’ ancient megachannels

Project description

Exploring the theory of ice flows forming Martian mega canyons

Mars had liquid water flowing in valleys, lakes and possibly oceans 3.5 billion years ago. This early climate collapsed around 3 billion years ago with the loss of most of the atmosphere, turning Mars into a global frozen desert. This collapse corresponds with the formation of Mars’ outflow channels, the largest canyons in the Solar System, thought to be the result of mega flooding. The ERC-funded IceFloods project hypothesises that the largest canyon, Kasei Valles, was instead carved by fast-flowing ice based on its scale and shape. The project will test this theory using multiple approaches, from fluid dynamics to geomorphology, potentially altering our view of how the early Martian climate and hydrology collapsed, ending conditions able to sustain life.

Objective

Mars is a hyperarid, global cryosphere, and likely has been for over 3 Gyr. However, during the so-called early Mars period 4-3.5 Gyr go, water flowed within thousands of valleys, in crater lakes, producing ancient deltas, building ice sheets, and possibly ponding in oceans. Surface liquid water was stable on Mars coinciding with the origin of life on Earth. However, this early benign climate collapsed with the continued loss of Mars atmosphere in the Hesperian period, ~3.5-3 Gyr ago. Outflow channels, megacanyons among the largest erosive landforms in the Solar System, date from this time. The largest one, Kasei valles, is so vast that the volumes of water involved in its formation were an important fraction of Mars total water inventory, and its outflow could have filled an ocean on the martian lowlands. In the current view, Kasei Valles was formed by a megaflood sourced from the catastrophic release of a near-surface aquifer, building on the basis of terrestrial analogue comparisons. This work aims to challenge this view. In this project I will explore the hypothesis that Kasei Valles was eroded by an ice stream, a region of channelized, fast-flowing ice within an ice sheet, based on its scale, location, and geomorphology, and reinvestigate the origin of other outflow channels under this perspective. Drawing from novel fluid dynamic simulations, analogue field work, geological mapping, and climate modelling, I will test the Ice flood hypothesis, which if correct would radically change our understanding of Mars transitional Hesperian climate, the nature of its hydrological cycle, and the possibility of a Hesperian ocean. Outflow channels hold a key for understanding the collapse of Mars early climate and hydrological system, the end of global conditions able to support life, and the rise of the global cryosphere that would come to dominate Mars climate.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-STG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 396 723,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 396 723,00

Beneficiaries (1)

My booklet 0 0