Project description
Bio-adaptive wave control technologies for deep-body bioelectronics
Wireless medical devices can be implanted to monitor health and deliver therapies. Technological advancements now enable minimally invasive, battery-free implants for health monitoring and nerve stimulation. A major challenge is effectively powering and controlling these devices from outside the body, due to the complexities of electromagnetic wave propagation in human tissue. The ERC-funded BESSEL project will develop bio-adaptive wave control technologies for efficient powering and precise control of millimetre- and micrometre-scale deep-body bioelectronics. The project will investigate wave behaviour in complex anatomical environments and create new conformal radiating surfaces for the practical implementation of these methodologies. It will also demonstrate clinical utility by wirelessly recording and modulating pancreatic nerve activity in an anaesthetised porcine model.
Objective
Wireless medical devices can be implanted in the body to monitor health and to deliver therapies. Recent advances in biosensors, neural interfaces, biotechnology, microelectronics, and improved surgical techniques enable a vision of minimally invasive battery-free bioelectronic implants that can perform a wide range of medical and research tasks. Examples include biosensing for an early detection of health anomalies, recording and precision stimulation of central and peripheral nervous systems, implantable labs-on-a-chip, surgical microbots, and so on. A key scientific challenge lies in how these devices can be powered and controlled from outside of the body. Existing wireless solutions remain limited in their ability to transfer energy and data. These limitations result from the difficulty in controlling electro-magnetic waves in the human body a dynamic, heterogeneous, and lossy medium. The objective of this proposal is to develop bio-adaptive wave control technologies that overcome these challenges to enable efficient powering and precise control of mm/m-scale deep-body bioelectronics. To accomplish this, we will (1) focus on the fundamental studies of waves and their control in complex and dynamic anatomical media; (2) develop new reconfigurable architectures of conformal radiating surfaces for the practical implementation of the developed wave control methodologies, and (3) demonstrate clinical utility by fully wireless recording and modulation of the pancreatic nerve activity in an anesthetized porcine model through dynamic wave control. The proposal relies on interdisciplinary track-record of the PI in bioelectronics and neural interfaces, wave physics and computational electromagnetics, conformal radiating structures and wireless power transfer. BESSEL consolidates these skills and enables conducting research on highly capable deep-body wireless bioelectronics with high translational potential.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.