Project description
Tailoring plasticity in advanced materials
The demand for advanced materials with improved functionality and sustainability is growing, particularly in industries such as transportation and energy production. Traditional methods of manipulating microstructures in metal alloys have proven effective, but new strategies are needed. In particular, a deeper understanding of how plastic deformation mechanisms operate in intermetallic phases is crucial. The challenge lies in predicting and tailoring these properties to achieve enhanced performance under extreme conditions. In this context, the ERC-funded TAILORPLAST project explores the atomic mechanisms of dislocation motion in intermetallics. It applies graph neural networks to design materials with tailored properties, focusing on intermetallic phases for structural applications. TAILORPLAST aims to drive the accelerated design of high-performance alloys with customised plasticity.
Objective
TAILORPLAST focuses on understanding and predicting plastic deformation mechanisms in intermetallic phases for advanced structural and functional materials. The traditional approach of manipulating microstructures in metal-based alloys has been immensely successful, but new materials and predictive materials design strategies are needed to enable new functionalities and sustainability in transportation, production, energy conversion and storage. TAILORPLAST seeks to address this challenge by adopting a generalised approach and leveraging recent experimental and computational insights into the atomic mechanisms of dislocation motion in intermetallics in combination with graph neural networks and their reach towards extensive databases.
Recently, we could show that small changes in intermetallic composition can lead to dramatic property changes. We uncovered the details of the essential dislocation mechanisms and energy barriers in the intermetallic crystals and have demonstrated how this knowledge enables tailoring of properties. Within a single crystal structure, the critical stresses for deformation may be varied across a large range by inducing sublattice order, even in a binary intermetallic.
The project's objectives are to expand the understanding of fundamental plasticity mechanisms beyond metals, transfer these mechanisms to a large class of topologically close-packed intermetallic phases, and ultimately identify promising intermetallics for tailored plasticity and predict the plastic properties of complex intermetallic precipitate phases in high-performance alloys. The success of TAILORPLAST will lead to purposeful application-oriented material selection, accelerated alloy design, and the ability to tailor structural materials for extreme conditions and functional materials for new applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
52062 Aachen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.