Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multifunctional Cavity Mirrors for Next-Generation Ultra-Stable Lasers

Project description

Compact, multi-wavelength, ultra-stable laser cavities

Optical (laser) cavities, also called optical resonators, are essential components of almost all lasers. Mirrors form a ‘cavity’ in which light maintained in oscillation is used as the beam source. Ultra-stable laser cavities (USLCs) have highly stable laser light frequencies and are increasingly common in atomic and molecular physics laboratories. The development of compact, multi-wavelength USLCs would have significant impact on high-precision applications including quantum sensing, spectroscopy, metrology and quantum computing. The ERC-funded MightyMirrors project aims to make this possible by integrating low-noise meta-devices with multi-layer photonic integrated circuits to produce multifunctional cavity mirrors. These will be integrated in complex resonator geometries. Its theoretical modelling framework and high-refractive index materials will support the effort.

Objective

Ultra-stable laser cavities (USLCs) lie at the heart of humankind’s most precise measurement instruments. Developing compact, multi-wavelength, USLCs will greatly benefit applications such as quantum sensing, spectroscopy, metrology, and quantum computing.
In this research program, I propose to explore novel versatile cavity mirrors by integrating low-noise meta-devices with multi-layer photonic integrated circuits into complex laser resonator geometries. I envisage a fully integrated USLC by incorporating all necessary sensors, modulators, and input-output optics within the mirror substrate. Innovative laser resonator topologies will allow for pushing the stability limits into new regimes and gaining access to novel application fields of optical cavities.
We have recently demonstrated an optical cavity incorporating an ultra-low-noise meta-mirror with an unprecedented cavity finesse of >11,500. These developments are possible thanks to our theoretical framework to model thermal noise processes in arbitrary optical systems. High-refractive index materials, like silicon, diamond, silicon nitride, and aluminum oxide, are ideal for realizing low-noise meta-devices and integrated photonic circuits.
The enormous conceptual and technological challenges lie in simultaneously controlling many properties (optical, optomechanical, thermal) in complex photonic configurations incorporating different materials and addressing various temperature ranges and multiple wavelengths within a single miniaturized cavity.
Through its research program, the MightyMirror project will enable a symbiosis of integrated photonics and free-space cavities, opening many new possibilities with a large impact on fundamental and applied science as well as on society.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-COG

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITAET BRAUNSCHWEIG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 972 500,00
Address
UNIVERSITAETSPLATZ 2
38106 BRAUNSCHWEIG
Germany

See on map

Region
Niedersachsen Braunschweig Braunschweig, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 972 500,00

Beneficiaries (1)

My booklet 0 0