Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Intensification of methane upgrading into ethylene via additive manufacturing of nanosecond pulsed plasma reactor

Project description

Novel plasma reactor promotes conversion of methane to ethylene

Valorising methane (CH4) into ethylene (C2H4) to create valuable products can significantly help combat climate change and foster economic prosperity. The EU-funded DisCH4rg3D project aims to develop a sustainable plasma reactor that efficiently converts CH4 to C2H4 using renewable electricity. The reactor configuration entails a plate-to-plate plasma discharge for CH4 activation, followed by a catalytic step for acetylene (C2H2) hydrogenation into C2H4. An artificial neural network will optimise energy input, while a bimetallic catalyst on a 3D-printed periodic open cell structure should enhance conversion efficiency. The system will also convert biogas directly into syngas. Technoeconomic and life cycle assessment analyses will validate the technology’s industrial feasibility against fossil fuel benchmarks.

Objective

Valorization of a greenhouse gas such as methane (CH4) into value-added ethylene (C2H4) can be paramount to combat climate change and foster economic prosperity. Non-thermal plasma reactors running solely on renewable electricity can enable modular, decentralized transformation of CH4 from natural gas or biogas in a sustainable fashion.
The DisCH4rg3D project will develop a catalytic Nanosecond Pulsed Discharge (NPD) plasma reactor for single-pass upgrading of CH4 into C2H4 with energy requirement competitive with the state-of-the-art industrial benchmark (i.e. 600 kJ/molC2H4). The reactor configuration entails a plate-to-plate plasma discharge for CH4 activation followed by a catalytic step where acetylene (C2H2) hydrogenation into C2H4 enhances the process throughput.
The energy input to the plasma discharge will be optimized with the help of an Artificial Neural Network which will relate the operating parameters to the energy performance of the reactor. The catalytic reaction following the plasma discharge-activation will be performed by a bimetallic hydrogenation catalyst deposited on a 3D-printed Periodic Open Cell Structure (POCS), which also serves as ground electrode. Heat integration between the plasma zone and the catalytic region allows operation without external heating, thus increasing the energy efficiency of the system. The catalyst composition can be tuned separately to intensify the C2H2 conversion into C2H4, whilst computer-aided design of the POCS can target optimal heat exchange.
The same integration approach will be used for the direct conversion of a biogas stream of CH4 and CO2 into syngas to showcase the versatility of the system that can represent a blueprint for modular, catalytic plasma reactors.
Ultimately, Techno-Economic Analysis (TEA) and Life Cylce Assessment (LCA) will be conducted to compare the proposed process with the fossil fuel-based industrial benchamk, hence to appraise its industrial feasibility.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-WIDERA-2023-TALENTS-02

See all projects funded under this call

Coordinator

ETHNICON METSOVION POLYTECHNION
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 153 486,72
Address
HEROON POLYTECHNIOU 9 ZOGRAPHOU CAMPUS
157 72 ATHINA
Greece

See on map

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0