Project description
Enhancing skin penetration
The skin acts as a barrier, protecting the body from environmental threats, pathogens, and chemical exposure. Its multi-layered structure effectively prevents the penetration of most substances, making the delivery of therapeutic compounds a significant challenge in dermatology. To improve delivery of natural bioactive compounds (NBCs) into the skin, the EU-funded ENHANCE-SKIN project proposes to encapsulate them in nanodispersions in a biopolymer matrix and incorporate enzymes, like hyaluronidase, to break down hyaluronic acid in the skin. The project will extract NBCs from various sources and develop biocompatible encapsulation methods for optimal, non-toxic NBC transdermal delivery.
Objective
The use of natural bioactive compounds (NBCs) in dermatological treatment is a promising healthcare frontier, however their effectiveness is hindered by limitations in skin penetration. Enhancing their delivery to target skin layers or specific disease sites remains a significant challenge. Encapsulation of NBCs within nanodispersions (NDs) and their embedding in a biopolymer hydrogel matrix has demonstrated promising outcomes in terms of improving the delivery of NBCs through the skin. However, there's still a need for more significant enhancement in penetration, while the reasons behind this effect remain uncertain. This project aims to overcome these challenges through the immobilization of enzymes, like hyaluronidase, that breaks down hyaluronic acid (major skin component) within the biopolymer hydrogel matrix. By prioritizing enzyme immobilization as a catalyst for enhanced penetration, this project pushes the boundaries beyond traditional encapsulation methods. This project plans to extract bioactive compounds from natural sources and investigate effective biocompatible encapsulation methods. Additionally, it will assess the biopolymer hydrogel matrix where the developed NDs and enzymes will be incorporated and immobilized. The equilibrium of the immobilized enzyme will be carefully studied to achieve optimal association and dissociation, aiming to enhance transdermal delivery while maintaining skin health. Moreover, comprehensive bioavailability and cytotoxicity studies, as well as in vitro and ex vivo analyses for in depth characterization of the transdermal delivery of NBCs are planned. By merging biocatalysis and nanomaterials, this project offers a more effective alternative to conventional treatments, including skin cancer, minimizing the ecological impact.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology
- natural sciences chemical sciences catalysis biocatalysis
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.4.1 - Widening participation and spreading excellence
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-WIDERA-2023-TALENTS-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
116 35 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.