Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

SeLf-powered self-rEshaping Autarkic skin For wireless motes - LEAF

Project description

Self-powered and self-reshaping solution for wireless nodes

Wireless motes offer significant benefits for sensor networks, providing crucial processing, data gathering and communication services both within and outside the network. However, these sensor nodes are often limited by maintenance, power, or performance challenges. The EU-funded LEAF project aims to reshape energy storage and energy harvesting technologies in a single thin foil for use in manufacturing wireless motes. This will improve storage and energy conversion and enable a variety of features depending on the materials used. Additionally, the polymer systems, bilayers, and layers will provide enhanced control over design and reproducibility.

Objective

We will combine 3D reshaping, energy harvesting, and energy storage within a single, thin foil. The thin foil of several micrometer thickness is going to be fabricated by inkjet and capillary printing on a temporal carrier support and consists of an adhesion sacrificial layer (own technology relying on lanthanum acrylic acid coordination polymer) and a strain inducing bilayer made of hydrogel and a stiffening layer (own innovation technology). The combination of specifically designed bilayer polymer system (polyethylene alt maleic anhydride type hydrogel and polyimide materials) is able to reshape into Swiss-roll architectures with few hundreds of micrometer diameter through a selective etching of the sacrificial layer and swelling of the hydrogel in a water-based solution. We will implement high precision capillary printing (HPCAP) to print dedicated structures with high control over length, thickness and separation with (sub-)micrometer resolution and high reproducibility of a variety of materials, which deliver different functionality. Self-powering of the autonomous device is ensured through the use of bi-functional materials deposited into interdigitated micro-electrode structures, function as light converter and storage materials at the same time. The thus created photo-storage microscale supercapacitor is embedded onto the thin foil and will serve as autonomous power source for the integrated silicon chip. The 2D area of the ultrathin foil delivers maximized surface area of the interdigitated finger structure and ensures sufficient light absorption to power the integrated RFIC (e.g. an active tag/sensory system). The optimized weight (R ~ 0.95) will be granted by the ultrathin nature of the foil (around 5um), while mechanical stability of the final device is ensured through 2D-to-3D reshaping. Key feature of our final device is the ability to retain its functionality also after 3D reshaping and its deployment onto the application surface.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2024-PATHFINDEROPEN-01

See all projects funded under this call

Coordinator

POLITECNICO DI TORINO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 929 878,75
Address
CORSO DUCA DEGLI ABRUZZI 24
10129 Torino
Italy

See on map

Region
Nord-Ovest Piemonte Torino
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 929 878,75

Participants (3)

My booklet 0 0