Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Open Force Microscopy for Biology and Biomedicine

Project description

Affordable, open-source force microscopy

Mechanical forces and interactions play a crucial role in various biological functions, including cell growth, differentiation, migration, and tissue development. Mechanobiology studies how cells sense, respond and adapt to mechanical stimuli such as pressure, stretch or stiffness in their environment. It is particularly important for understanding how mechanical forces contribute to disease processes like cancer progression. The ERC-funded OpenFMLab project aims to develop an affordable, open-source atomic force microscopy (AFM) prototype dedicated to biological mechanical testing. The project builds on prior research and aims to overcome the high cost and lack of specialisation of commercial AFM systems, making nanomechanical testing accessible to all biology and biomedical laboratories.

Objective

The emergence and establishment of mechanobiology has led to a growing demand for the mechanical characterization of biological samples. Moreover, nanomechanical tests for diagnosis and prognosis of diseases are now being applied in clinical trials. Atomic force microscopy (AFM) is likely the most versatile, robust, and standardized tool for nanomechanical tests of biological systems. However, commercial AFM systems are expensive, not dedicated to mechanical tests, and difficult to use and customize. To solve these problems, we propose to develop and build an open-source force microscopy prototype: openFMLab. Built on the instrumentation developed during ERC Consolidator project MechaDynA, the openFMLab system will be affordable, customizable, user-friendly, and dedicated to mechanical tests in biology. Cost reduction will be assured by using open-source design, hardware and software and a function exclusively dedicated to mechanical measurements. The development of robust protocols and algorithms for calibration, data acquisition and data processing will provide ease-of-use. Finally, the system will be modular and adaptable to any optical microscope and experimental setup. During the openFMLab project, we will design, build, implement, and test the system in-house and with external end-users at biology and biomedical laboratories and industrial partners. We will explore cost reduction and create collaborations to add value to the system and define licensing and knowledge transfer and commercialization strategies. The final goal of openFMLab is to make AFM for nanomechanical testing a common tool in any laboratory.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-POC

See all projects funded under this call

Host institution

UNIVERSITE D'AIX MARSEILLE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
BOULEVARD CHARLES LIVON 58 LE PHARO
13284 Marseille
France

See on map

Region
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0