Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Modular metal-organic proton conductors for high-temperature water electrolyzers and fuel cells

Objective

The European Green Deal sets ambitious targets to reduce greenhouse gas emissions by 55% by 2030 and achieve net-zero emissions by 2050. Achieving these goals requires innovative solutions, with renewable hydrogen emerging as a key strategy. As a clean and versatile energy carrier, renewable hydrogen offers a promising pathway to decarbonize sectors such as transportation, industry, and energy storage, making it ideal for meeting the Green Deal's climate objectives. However, the production of renewable hydrogen is currently limited by the efficiency of electrolysis technologies, particularly those involving proton exchange membrane (PEM) electrolyzers. These systems, while effective, are constrained by low thermal stability and reduced efficiency at higher temperatures, which also hinders the broader adoption of hydrogen fuel cell electric vehicles (HFCEVs). To address these challenges, the MOPOWER project aims to develop advanced metal-organic glasses (MOGs) as a new class of proton conductors. Using a bottom-up strategy, MOPOWER seeks to design MOGs tailored for intermediate-temperature electrolysis (150–250°C) and high-temperature PEM fuel cells (100–180°C). These materials offer superior proton conductivity, thermal stability, and exceptional processability, allowing them to be easily shaped into defect-free, high-performance membranes. This modularity and ease of fabrication are critical for scaling up production and integrating MOGs into practical PEM systems. Through this innovative approach, MOPOWER aims to overcome the current limitations of renewable hydrogen production, supporting the transition to a sustainable, climate-neutral future. The MOPOWER bridges the candidate's strong background in conductive porous materials with the host group's extensive experience in microfabrication, making it a feasible undertaking.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Coordinator

KATHOLIEKE UNIVERSITEIT LEUVEN
Net EU contribution
€ 200 400,00
Address
OUDE MARKT 13
3000 Leuven
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data
My booklet 0 0