Objective
Beyond classical devices, functional material, such as ferroic materials, hold great promise for future nanoelectronic device concepts, enabling faster, smarter and more energy efficient computation. This new generation of materials develops in the direction of increased system complexity, and often involves complex 3D structures at the nanoscale with atomically sharp interfaces. The progress is catalyzed by the ability to resolve their properties at the relevant length scales, an increasingly difficult task.
As an MSCA fellow, Dr. Kasper Hunnestad will integrate migration, an existing computational method in geophysics, to conductive atomic force miscopy (cAFM). cAFM is typically limited to surface conductance measurements, whereas migration is a powerful technique employed for converting surface acquisitions of seismic data to subsurface 3D images. With Dr. Hunnestad’s background in both material science and geophysics, he can effectively develop this multidisciplinary method and exploit it to reveal 3D transport properties of exotic topological states in functional oxides. To begin the research, a two-year research stay at the University of Canterbury will enable two primary objectives:
i) Develop the computational method migration for cAFM purposes
ii) Perform experiments on materials hosting exotic topological states with technological potential.
In the return phase at the University of Oslo, the technique will be benchmarked against established electrical characterization techniques, leading to the final objective:
iii) Correlate quantitative electrical measurements to the cAFM data
The research will pave the way for future investigations of 3D systems, largely expanding other researchers capabilities to understand their materials. Furthermore, it will strengthen Dr. Hunnestad’s network and competence, bringing him in contact with experts in the relevant scientific disciplines: ferroic materials, computational methods and electrical characterization.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global FellowshipsCoordinator
0313 Oslo
Norway