Project description
New tool modelling high-order quantum effects could explain Higgs boson behaviour
Understanding the Higgs boson is a key goal in particle physics because it could unlock new physics beyond the standard model. Although the latter has been incredibly successful in explaining fundamental forces, certain questions such as the origin of dark matter remain elusive. To push the boundaries of our understanding, scientists are studying the Higgs boson at the Large Hadron Collider, focusing on how it behaves in high-energy scenarios, such as when it is produced alongside a Z boson or jet. These comparisons require complex multi-loop calculations to account for higher-order quantum corrections. With the support of the Marie Skłodowska-Curie Actions programme, the HINOVA project will develop innovative techniques to tackle these calculations, using a tool called AsyInt.
Objective
One of the current main goals in particle physics is the precise determination of Higgs boson properties, which simultaneously serves as a probe to new physics beyond the Standard Model (SM). The SM has been highly successful in describing the fundamental interactions of nature. However, the nature of the Higgs boson is not completely determined, and unsolved problems such as the origin of dark matter persist. These challenges call for precise studies of Higgs boson properties and searches for new physics, which are being conducted at the Large Hadron Collider (LHC). In this context, precise comparisons between theoretical predictions and experimental measurements in collider observables are crucial, particularly in boosted Higgs boson production associated with a vector boson or jet. These comparisons require advanced multi-loop calculations for higher-order quantum corrections in perturbative Quantum Field Theory.
HINOVA will develop novel analytic techniques for multi-loop calculations, and aim to provide cutting-edge predictions for gluon-fusion Higgs boson production associated with a Z boson or jet at the LHC in the boosted region. Its primary goal is to analytically compute the missing next-to-leading order quantum electroweak corrections for these predictions. The main challenge lies in the calculation of two-loop four-point Feynman integrals involving top quarks, Higgs and gauge bosons. This challenge will be addressed using AsyInt, a novel analytic tool independently developed by the researcher. Its secondary goal is to establish a new method in AsyInt to analytically compute three-loop four-point Feynman integrals involving top quarks at high energies, which appear in next-to-next-to-leading order quantum chromodynamic (QCD) corrections for these predictions. HINOVA will deliver new results and methods that are instrumental for the most precise studies of Higgs boson properties and for new physics searches at the LHC and future high-energy colliders.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been human-validated.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been human-validated.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2024-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1211 GENEVE 23
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.