Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

singlet fission non-conjugated polymeric photovoltaic materials fabrication

Project description

Singlet fission materials could help overcome photovoltaic efficiency limits

Solar energy is a cornerstone of clean energy, but traditional photovoltaic materials are limited in how efficiently they can convert sunlight into electricity. Singlet fission – a process that splits high-energy excitons into two – offers a promising way to surpass these limits. Despite their potential, singlet fission materials are scarce, and integrating them into photovoltaic devices is still challenging. With the support of the Marie Skłodowska-Curie Actions programme, the SFPOLY project plans to design innovative polymers inspired by known singlet fission small molecules. Using advanced polymer synthesis, tailored polymers will be combined with PbS quantum dots to create composite films with singlet fission properties. By fine-tuning polymer structures and analysing their photophysical properties, the proposed research seeks to develop new photovoltaic materials.

Objective

On the path to enhancing photovoltaic (PV) materials and surpassing their efficiency limits, one promising approach is to exploit the phenomenon of singlet fission (SF). This process involves high-energy singlet excitons generated by light absorption in organic molecules, which interact with nearby ground-state molecules to produce two triplet excitons. This intricate interaction significantly boosts the efficiency of photovoltaic devices. Given the scarcity of SF materials and the advantageous properties of polymers in PV applications, this project aims to address the challenge by employing advanced polymer synthesis techniques.

The project’s hypothesis centers on designing monomers inspired by known singlet fission small molecules. The following steps involve utilizing controlled polymerization strategies to create polymers with various topological structures. These polymers will be combined with PbS quantum dot materials to produce composite films with SF properties through spin coating. By adjusting the polymer topology to fine-tune the stacking configuration of the polymer chains, the photophysical properties of the materials can be precisely controlled. Through detailed analysis of these photophysical properties, the relationship between polymer structure and photophysical behavior will be established. Ultimately, this will lead to the development of a new generation of composite singlet fission photovoltaic materials, enabling the creation of high-performance photovoltaic devices that surpass the theoretical limits of traditional photoelectric conversion efficiency.

Through advanced polymer synthesis, precise photophysical analysis, and fine-tuned thin-film optimization, this research will unlock the potential of singlet fission, significantly impacting polymer materials. It will pave the way for new photovoltaic materials, contributing to clean energy and promoting environmental sustainability.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2024-PF-01

See all projects funded under this call

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 260 347,92
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0