Project description
Voltage-controlled spin waves for next-gen computing
Spin waves offer a pathway to faster, more energy-efficient computing, potentially surpassing the limits of traditional electronics. In this context, the ERC-funded SMIFRE project aims to explore voltage control of spin waves using magneto-ionic effects in low-loss yttrium iron garnet films. By employing lithium-ion gating, researchers will program and manipulate spin waves with small voltages, creating reconfigurable logic components. The project will develop ionic gates (one battery-like for robust control, one supercapacitor-like for fast phase modulation) and integrate them into magnonic couplers and circuits. SMIFRE is expected to demonstrate a fully programmable, all-magnonic logic device, laying the foundation for high-frequency, low-power computing technologies.
Objective
Spin waves are emerging as a promising medium for information processing. The potential of spintronics in information processing lies in its ability to offer higher speeds and lower power consumption compared to traditional electronic components. Spin waves could accelerate information processing and surpass the limits that transistor-based electronics are approaching. The successful demonstration of a spin-wave logic circuit would validate the feasibility of this technology and pave the way for its wider adoption. However, this technology would require a robust and efficient voltage control mechanism for spin waves which, so far, remains elusive.
A promising new development in the field of magnetism is the voltage control of magnetic properties via ionic gating, an area referred to as magneto-ionics. Control of magnetism through reversible ion migration can be achieved with small voltages. When applied to magnonics, it sparks the possibility of controlling spin waves by voltages in on-chip logic devices, thereby setting the stage for high-frequency, energy-efficient, reconfigurable computing.
Within this project, I will investigate voltage control of spin waves in low-loss yttrium iron garnet (YIG) films and waveguides by employing Li-ion gating in patterned all-solid-state structures. I will demonstrate two unique ionic gates, one that operates like a battery and provides robust spin-wave control for the programming of logic functions, and another that operates as a supercapacitor offering fast phase control for information processing. Upon successfully developing these control components, I will construct a voltage-controlled 22 magnonic coupler by integrating the battery-like gate into two proximal YIG waveguides. This coupler will act as a reconfigurable universal logic gate. Finally, I will integrate multiple voltage-programmable magnonic couplers and magneto-ionic phase shifters to create a programmable all-magnonic logic circuit.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences physical sciences electromagnetism and electronics spintronics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2024-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.