Project description
Dynamic electromagnetic interference shields: simulation prior to 3D printing
Electromagnetic interference (EMI) shielding protects electronic devices and systems from detrimental electromagnetic radiation. This protection is crucial in many sectors, including aerospace, military, medical and consumer electronics. EMI shielding has progressed from the simplest passive insulation, such as that used on electrical cables, to smart (active and dynamically responsive) concepts that change properties in response to changing threats. However, these concepts face significant technical challenges impeding commercialisation. With the support of the Marie Skłodowska-Curie Actions programme, the Sim3D-DynaShield project aims to combine mechanical, thermal and electromagnetic simulation with 3D printing to develop dynamic EMI shields. This will allow visualisation, design and analysis of performance before fabrication as well as the creation of complex geometries with precision.
Objective
Electromagnetic interference (EMI) shielding is the mitigation of unwanted electromagnetic (EM) radiation, which hinders the smooth operation of electronic systems. Over time, EMI shielding research has advanced from static to smart shielding, where the shields dynamically respond to external stimuli (pressure, temperature, etc), providing real-time protection. However, existing research on smart/dynamic EMI shielding materials faces challenges in precision, sustainability, and integration, limiting their real-world applications. Current solutions often rely on porous petroleum-based materials such as polyurethane polymers, which lack microstructure control and require constant exposure to stimuli to maintain the ON/OFF state. Further, the high resource requirements and lack of pre-fabrication optimization in current research demand innovation. This proposal aims to address these challenges by leveraging simulation-integrated 3D printing techniques to design and develop various microlattice mesh structures based on sustainable polycaprolactone shape memory polymer integrated with conducting and magnetic nanoparticles for enhanced smart shielding ability. This pioneering and innovative approach of combining mechanical, thermal and EM simulation with 3D printing allows visualization, designing and meticulous analysis before fabrication, enabling real-time assessment of material responses under various stimuli and the creation of complex geometries with precision. In this proposal, a smart shield integrated prototype system for real world applications will be developed, addressing the crucial research gap associated with realizing device-integrable smart shields in a resource-efficient and sustainable manner. My experience in EM simulation-oriented investigations for developing rigid to flexible EMI shielding structures and substantial knowledge on microwave materials, that I gained during my PhD, will significantly aid in producing tangible outcomes from this proposal.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- natural sciences chemical sciences polymer sciences polyurethane
- natural sciences mathematics pure mathematics geometry
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2024-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3000 LEUVEN
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.