Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Paramagnetic NMR Method Development for a New Materials Age in Battery Research

Project description

Paramagnetic NMR methods for battery research

Magnetic resonance spectroscopy combines spintronic and nuclear techniques to analyse materials, providing insights into key chemical and magnetic structures for energy storage, spintronics, and multiferroics. It links chemical structures to material properties, aiding in the design and optimisation of various materials. Supported by the Marie Skłodowska-Curie Actions programme, the pNMR-dev project will develop innovative paramagnetic NMR methods to quantitatively assign spectra and extract structural models for lithium- and sodium-ion battery cathodes. The project will implement advanced NMR techniques to investigate local material structures and create Rietveld software to refine structural models. By exploring an unexamined system, it will advance materials studies in physics, chemistry, and materials science.

Objective

Magnetic resonance spectroscopy leverages spinelectronic or nuclearto reveal information about a system otherwise inaccessible to bulk structural characterisation techniques. As applied to device materials, magnetic resonance offers information about local chemical and magnetic structurese.g. in energy storage and generation, spintronics, and multiferroicstheir defects, degradation and failure mechanisms. From a physics-based understanding of spin interactions, one can derive accurate pictures of chemical structure and directly connect it with material properties.
Almost all device materials rely on an intimate network of interacting electron and nuclear spins: redox reactions in battery materials, catalysts and photovoltaics; encoding of information in spintronics; and sensing of magnetic, electric and/or strain fields in multiferroics. The unpaired (paramagnetic) electron spins in these systems, however, limit the application of traditional nuclear magnetic resonance (NMR) spectroscopic methods to study their structures. Through understanding and careful control of the interactions between electron and nuclear spins and their influence on device properties, one can design, develop and optimise materials for device applications.
This project will develop novel experimental and theoretical methods in paramagnetic NMR to quantitatively assign spectra and extract a structural model, here, applied to lithium- and sodium-ion battery cathodes. The work packages include: (1) design and implementation of state-of-the-art NMR techniques to probe local material structures; (2) development a revolutionary NMR Rietveld software for fitting and refining structural models against spectra; and (3) application of the methods developed in (1) and (2) to investigate an unseen system. These projects will ultimately guide the future study of materials using paramagnetic NMR, with wide-ranging benefits for the physics, chemistry and materials science fields.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2024-PF-01

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 226 420,56
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0