Project description
Smarter chemistry with less data
In chemistry, machine learning has revolutionised how scientists plan reactions and design new drugs, but only when big data is available. In everyday lab work, datasets are often small, sparse or incomplete, limiting the effectiveness of today’s AI tools. Supported by the Marie Skłodowska-Curie Actions programme, the LowDataML project aims to close this gap by training a new generation of researchers in machine learning methods tailored to real-world, low-data environments. Ten PhD candidates will develop sustainable, cost-effective approaches that work even when data is scarce, bringing AI closer to the realities of synthetic chemistry and drug discovery. By focusing on smarter algorithms rather than sheer data volume, LowDataML hopes to accelerate scientific progress while reducing chemical waste.
Objective
Innovation in the chemical sciences is bound to iInnovation in the chemical sciences is bound to impact on Healthcare and Society. Supported by improved analytical methods and automation, brute force and large-scale experimentation have been playing an important role in generating volumes of chemical and biological data. These data now enable the support to decision making through machine learning/artificial intelligence (ML/AI) algorithms. In doing so, such algorithms help in the design and prioritization of experiments. As a result, we are witnessing a renaissance of ML/AI for accelerating chemistry, as in planning retrosyntheses, predicting reaction products, designing drug leads and materials de novo, and deconvoluting drug targets among others. Despite the chemistry advances leveraged by ML/AI, one can argue that not all research questions and findings benefit from the availability of big data (e.g. some discoveries are serendipitous). Here we argue that the current ML/AI toolkit excels in scenarios (big data) that do not entirely map onto daily practice (low and sparse data, often out of training set distribution). Thus, the scientific potential of ML/AI is not fully realized when state-of-the-art tools are implemented and primed for big data and highly charted search spaces. The disconnect between what is feasible and generally needed is apparent and is impacting our ability to advance the chemical sciences at a faster pace. In LowDataML we propose a suite of intersectional and transdisciplinary research projects that will create a new breed of scientists. Through an extensive training program, we will deliver 10 PhDs to the European R&D ecosystem, who are experts in low data ML with domain knowledge in synthetic organic chemistry and drug discovery. Further, the projects seamlessly integrate together and focus on: i) real world needs; ii) sustainability by minimising cost, time and materials consumption, with special focus on ecofriendly research practices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences sociology industrial relations automation
- natural sciences biological sciences ecology ecosystems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2024-DN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1649-003 Lisbon
Portugal
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.