Objective
Interactive decision-making among multiple entities is critical in modern control systems, such as autonomous vehicle trajectory planning, resource coordination in smart power grids, and collaborative robotics. Safety constraints, including collision avoidance in autonomous vehicles and maintaining supply-demand balance in smart grids, are of paramount importance in these systems. However, ensuring safety remains a significant challenge due to its dependence on agents' coupled actions and stochasticities like unpredictable trajectories of road agents in autonomous driving and variable renewable energy outputs in smart grids.
This research program proposes a framework for ensuring safety and performance for multiagent stochastic dynamic games. Dynamic game theory provides a powerful foundation for addressing interactive decision-making problems. Recent advances in artificial intelligence, particularly in solving complex multiagent problems, have led to the development of scalable algorithms for such decision-making challenges. However, existing algorithms lack provable performance guarantees when applied to real-world systems with constraints, leaving a critical gap in the field.
The proposed research program addresses this gap by developing a theoretical framework guided by real-world challenges. To achieve this, it proposes to integrate recent breakthroughs in three fundamental fields of stochastic control, game theory and learning theory: safety assurance and control under partial information from stochastic control, characterizing tractable classes of games and ensuring equilibrium efficiency from game theory, and powerful function approximators with provable guarantees from learning theory.
To bridge theory and practice, the program verifies the developed algorithms on real-world problems in transportation, power systems, and robotics, utilizing the PI's robotics testbed and ongoing collaborations with the energy sector.
The anticipated outcomes inclu
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2025-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.