Objective
The objective of KBS-SHIP was to develop design concepts for the implementation of advanced IT systems in ships.
The project aimed to provide the stimulus for engaging the support of the marine industry for the introduction of KBSs, expected in the early 1990s. It also aimed to assist bridge and engine-room officers in duties ranging from voyage planning to alarm handling, by providing:
-a framework for the integration of information in ships
-a decision-support system for the efficient operation of a complex ship by a small crew.
The viability of the concepts was ensured by building a prototype KBS-SHIP system incorporating a limited number of expert systems.
The objective was to develop design concepts for the implementation of advanced information technology (IT) systems in ships. The project aimed to provide the stimulus for engaging the support of the marine industry for the introduction of knowledge based systems (KBS). It also aimed to assist bridge and engine room offices in duties ranging from voyage planning to alarm handling, by providing a framework for the integration of information in ships, and a decision support system for the efficient operation of a complex ship by a small crew. The viability of the concepts was ensured by building a prototype system incorporating a limited number of expert systems. The work was structured round four themes. Firstly, the development of the expert voyage pilot EVP in regard both to voyage planning and to route planning. Secondly, the development of a comprehensive design specification for the architecture. Thirdly, the delineation of the scope of the final system in terms of the number and scope of individual subsystems. The maintenance expert system was defined as a causal model and includes the checking and monitoring of sensors. Cost functions were introduced for optimization calculations, and numerical algorithms were combined with rules. Lastly, the preparation of requirement specifications and outline design specifications for a number of expert systems for use on later work.
In the first project definition phase, the onboard information flow was described and a limited bench model of an expert subsystem - the Expert Voyage Pilot (EVP) - was built.
In the second phase, the status of the work, which was structured round four themes, was as follows:
-The development of the EVP in regard both to voyage planning and to route planning. An Atlantic crossing scenario was prepared, and a change from Prolog to LISP for later inclusion in the THOR shell of STL (a product resulting from project 96) was made. -The development of a comprehensive design specification for the KBS-SHIP architecture; specification prototyping was finished in October 1988.
-The delineation of the scope of the final KBS-SHIP system in terms of the number and scope of individual subsystems - the maintenance expert system was defined as a causal model and includes the checking and monitoring of sensors. Cost functions were in troduced for optimisation calculations, and numerical algorithms were combined with rules.
-The preparation of requirement specifications and outline design specifications for a number of expert systems within the KBS-SHIP for use in later work.
Exploitation
The work provided the basis for two products: an expert system for navigation - the Voyage Pilot Expert System - is to be developed into a product by Krupp-Atlas Electronik, and an expert system for machinery operation is to be developed by Sren T. Lyngs .
The study of the development of an acceptance procedure for expert systems onboard ship being made by Lloyd's Register is one of the several ways in which the project is encouraging the acceptance of AI technology by the European marine industry. The project is also expected to influence international standards for local area networks onboard ship as well as the design of maritime surveillance and control equipment.
The results of KBS-SHIP have been incorporated in ESPRIT II project 2163.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences artificial intelligence expert systems
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Data not available
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Data not available
Coordinator
2800 Lyngby
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.