Objective
The Pierre Auger Observatory (Auger) measures the ultra high energy cosmic ray flux and arrival directions indirectly by detecting the showers of charged particles that cosmic rays generate in the earth and apos;s atmosphere. These air showers are detected using two different techniques: air fluorescence detectors, like the High Resolution Fly and apos;s Eye experiment (HiRes), observe the light from excited nitrogen molecules in the path of the air shower; huge arrays of surface detectors, similar to the A GASA experiment, detect the shower and apos;s particle profile at ground level. The Auger experiment can combine both detection methods in hybrid detection mode. This is an important advantage over previous experiments, especially in light of the ongoing d iscussion about the existence or non-existence of the GZK flux suppression: The cosmic ray flux is expected to decline sharply at an energy around 60 EeV due to photopion production in the cosmic microwave background radiation. The HiRes experiment has obs erved this effect, whereas AGASA sees an unchanged continuation of the cosmic ray flux. This discrepancy poses a serious problem, since, in the absence of nearby sources for the and quot;super GZK and quot; cosmic rays, the non-existence of the GZK effect would require the introduction of new physics models.We intend to develop the necessary reconstruction and Monte Carlo simulation programs to study the cosmic ray data observed by Auger in hybrid mode. We will directly compare the reconstructed shower geo metries and energies that the two different methods yield for these cosmic rays and search for systematic differences between the air fluorescence and the surface detector technique. A systematic shift in reconstructed energy between the two methods for in stance could explain the discrepancies in the HiRes and AGASA spectra. In this study, sophisticated air shower and detector simulation programs are needed to test the reconstruction of events and our understanding of the underlying physics in general.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2002-MOBILITY-5
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.