Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Integrable difference equations and their applications

Objective

In the past decade the theory of discrete integrable systems described by difference equations has emerged as the most prominent direction of research within the field of integrability. The study of difference equations constituting the exact analogues of integrable differential equations have fundamentally contributed to mathematics by opening new fields of research, e.g. in difference geometry and the theory of non-linear special functions.

This proposal concerns both linear difference equations that possess a class of Darboux symmetry transformations and non-linear difference equations that are compatibility conditions for a set of the linear equations. Whilst most of the activity in the field has concentrated on equations of hyperbolic type, the emphasis of the proposal lies in the study of equations of elliptic type, which forms almost unchartered territory, although importantly first paradigms in this direction has been constructed by the applicant. The structure of integrable difference equations of the latter type is expected to be richer, and thus more fundamental, than of their continuous counterparts, and this will form the principal object of investigation.

In particular, this project endeavours to find discrete (difference) integrable analogues of the equations that describe:
i) Axisymmetric, stationary, vacuum Einstein fields (Ernst equation),
ii) stationary, vacuum Einstein-Maxwell fields (Ernst-Maxwell-Weyl equations), both through the consideration of auto-Backlund and Darboux transformations.

An important problem is the question of classification of such systems. Experience with discrete systems suggests that this problem is tractable and can be formulated in a precise way. To resolve this problem the theory of reductions of discrete integrable systems will be further developed. An aim is to gain insight in integrable reductions of Einstein's equations of General Relativity, using discrete Ernst equations as toy model of discrete gravity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2002-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

UNIVERSITY OF LEEDS
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0