Objective
The NanoMesh project is based on the recent discovery by one of the proposing groups of a spectacular nanostructure of hexagonal boron nitride that self-assembles on a rhodium metal surface [M. Corso et al., Science 303, 217 (2004)]. It is a supported, m esh-like structure consisting of two atomic layers with a periodicity of 3.2 nm and holes of about 2 nm. The relevance of the project to the thematic area 3.4.1.1 is twofold. With roughly 400 boron and nitrogen atoms in the mesh unit cell, the self-assem bly process is truly remarkable, and it is accessible to live observation by surface science techniques, including scanning tunneling microscopy under process conditions. By elucidating the self-assembly mechanism in this highly non-trivial case, the pro ject is very likely to provide new and general insight in this efficient and cheap type of nanostructure formation. The second key point of relevance lies in the nature and the stability of the boron nitride nanomesh. It is inert and stable up to 1000 K, and it thus lends itself perfectly as a template or scaffold material for forming secondary nanostructures. Metal deposition on the nanomesh is expected to produce highly monodisperse metallic nanoclusters that represent prime candidates for catalysts w ith high activity and selectivity, or for nanostructured magnets with superior magnetic or spintronic properties. The edges around the pores of the mesh permit the stable covalent attachment of organic or even biological molecules of desired functionali ty, thus leading to well structured functional surfaces. The attachment of large molecules should lead to higher hierarchies of self-assembling supramolecular structures that should be very interesting for biotechnology applications. In full expectation of these applications, the project also addresses the production issues related to precursor molecules and substrates.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences physical sciences optics microscopy electron microscopy
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences optics microscopy scanning tunneling microscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2003-NMP-TI-3-MAIN
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
ZURICH
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.