Objective
Over the past decade several video coding technologies have emerged to achieve great commercial success and it is widely expected that digital video systems will completely replace all existing traditional analogue based video systems during the next decade. DISCOVER will address the development of several advanced digital video coding technologies which are very likely to represent a breakthrough in new video coding application scenarios. Until now video coding research and standardization have been adopting a video coding paradigm where it is the task of the encoder to explore the source statistics, leading to a complexity balance where complex encoders interact with simpler decoders. This paradigm is strongly dominated and determined by applications such as broadcasting, video on demand, and video streaming. Distributed Video Coding adopts a completely different coding paradigm by giving the decoder the task to exploit 'partly or wholly' the source statistics to achieve efficient compression. This change of paradigm also moves the encoder-decoder complexity balance, allowing the provision of efficient compression solutions with simple encoders and complex decoders. This new coding paradigm, never considered by any video coding standard, is particularly adequate to emerging applications such as wireless video cameras and wireless low-power surveillance networks, disposable video cameras, certain medical applications, sensor networks, multi-view image acquisition, networked camcorders, etc., where low complexity encoders are a must because memory, computational power, and energy are scarce. The objective of DISCOVER is to explore and to propose new video coding schemes and tools in the area of Distributed Video Coding with a strong potential for new applications, targeting new advances in coding efficiency, error resiliency, scalability, and model based-video coding thus paving the way for a breakthrough regarding the next video coding generation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorssmart sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Topic(s)
Call for proposal
Data not availableFunding Scheme
STREP - Specific Targeted Research ProjectCoordinator
08034 BARCELONA
Spain