Skip to main content

Advanced Integrated Millimetre-Wave Sub-Assemblies

Objective

The next decade will see a proliferation of new applications which will call on mm-wave techniques for the transmission of information together with other uses with Radar and Measurements, all associated with civil applications. The communications spectrum is rapidly becoming too confined to accommodate the increase in traffic unless high frequencies become available. V-sat system will move to 30 GHz, vehicle mobile communications to 63 GHz and Doppler Radar to 78 GHz. Urban short hop links are also following the same direction.

The need is there, the limiting factor is the demand for sound, cheap hardware with reliable industrial components. At 30 GHz and above however new technologies and devices have to be developed. This is essentially the object of this project. The originality is that the devices and technology are driven by the system's requirements expressed by three of the partners in the AIMS consortium. Together with this activity to define the system needs, there is a group engaged in working on circuit optimisation and an advanced device development in the research and development of the components companies.
The communications spectrum is rapidly becoming too confined to accommodate the increase in traffic unless high frequencies become available.

At 30 GHz and above however new technologies and devices have to be developed. This is essentially the object of this project.

Together with the activity of defining the system needs, there is a group engaged in working on circuit optimization and advanced device development.

The demonstrators will be functional blocks of front ends for 2 similar communication systems at approximately 30 GHz:
a short hop land based link;
a 20/30 GHz V-SAT system.

The subassemblies acting as demonstrators will be a synthesizer for a V-SAT front end, the associated transceiver and a receiver assembly for a short hop link made of circuits developed in the course of this work.

The project has already completed the system definition of subassembly and device requirements for the V-SAT and short hop links at 30 GHz. Based on this, heterojunction devices (such as heterojunction bipolar transistor (HBT) and pseudomorphic heterojunction field effect transistor (HFET) needed in such systems have been developed. These devices are being incorporated into subassembly circuit development to make the demonstrators needed.
The concept is to build the project in a vertical structure very applications-oriented, and bring to the market an industrial, second source facility capable of providing equipment and system houses with the mm-wave components which they need. The demonstrators will be functional blocks of front-ends for two similar communication systems at approximately 30 GHz: a short-hop land-based link, and a 20/30 GHz V-SAT system. The devices will include MESFETs (including SAGFETs), HBTs (Heterojunction Bipolar Transistors), and DMTs (Doped-Channel, MIS-like Transistors), and use will be made of the PM HFET (pseudomorphic heterojunction field-effect transistor) being developed in project 2035. The circuits will include LNAs, VCOs, T/R switches, mixers, up-converters, ADCs and power amplifiers (SSPA). The sub-assemblies acting as demonstrators will be a synthesiser for a V-SAT front-end, the associated transceiver, and a receiver assembly for a short hop link made of circuits developed in the course of this work. For these sub-assembly demonstrators a conventional version of some functions will, in a first approach, be realised with MESFET technology, which will be replaced later by the more advanced devices.

Coordinator

Thomson CSF
Address
Domaine De Corbeville
91404 Orsay
France

Participants (7)

Alcatel Espace SA
France
Address
11 Avenue Dubonnet
92407 Courbevoie
Daimler-Benz AG
Germany
Address
Sedanstraße 10
89077 Ulm
Deutsche Aerospace AG
Germany
Address
Sedanstraße 10
89077 Ulm
ELEKTRONIKCENTRALEN
Denmark
Address
Venlighedsvej, 4
2970 Hoersholm
Telefunken Microelectronic GmbH
Germany
Address
Theresienstraße 2
74072 Heilbronn
Thomson CSF Semiconducteurs Specifiques
France
Address
128 Route Départementale
91401 Orsay
Université de Lille I (Université des Sciences et Technologies de Lille Flandres Artois)
France
Address
Domaine Universitaire Scientifique
59655 Villeneuve D'ascq