Objective Understanding the fluid dynamics of the atmosphere and ocean is critical to ensuring sustainable human activity. Specifically, understanding and parameterizing the response of the earth's oceans to thermal forcing is essential for the quality of long-term predictions of global climate change. One component of the oceanic response to thermal forcing is the small-scale irreversible mixing of fluid of different densities driven by vertical variations of velocity, i.e. within stratified shear flows. This project proposes to support the research of Dr Caulfield on this problem, through partially funding a Ph. D. student.This support will facilitate the rapid and permanent reintegration of Dr Caulfield into the European Research Area, and access Dr Caulfield's international network of research collaborators and experience. During this project, Dr Caulfield's research will improve existing parameterisations of stratified mixing by developing rigorous bounds on the amount of mixing which is possible within various stratified shear flows due to turbulent motions, using recently developed mathematical and computational methods. These methods are based around solving an appropriately formulated variational problem subject to physically reasonable constraints.They will then compare these predictions to the results of direct numerical simulations both to investigate the quality of the theoretical results, and also to suggest further constraints evident within the simulations, which could be applied to the theoretical problem. They will then use these results, through consultation with a multi-disciplinary international group of scientists, to construct improved parameterisations of shear induced stratified mixing for use in larger scale models. Fields of science natural sciencesphysical sciencesclassical mechanicsfluid mechanicsfluid dynamicsnatural sciencescomputer and information sciencescomputational sciencenatural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changesengineering and technologyenvironmental engineeringenergy and fuelsenergy conversion Programme(s) FP6-MOBILITY - Human resources and Mobility in the specific programme for research, technological development and demonstration "Structuring the European Research Area" under the Sixth Framework Programme 2002-2006 Topic(s) MOBILITY-4.2 - Marie Curie International Reintegration Grants (IRG) Call for proposal FP6-2002-MOBILITY-12 See other projects for this call Funding Scheme IRG - Marie Curie actions-International re-integration grants Coordinator THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE Address The old schools, trinity lane Cambridge United Kingdom See on map Links Website Opens in new window EU contribution € 0,00