Objective
The demand for secure data systems is increasing, and hardware and software protection is needed to improve current password solutions. The most modern protection for end-to-end data or message encryption uses public key methods, as represented by the RSA or Fiat Shamir Algorithms. State-of-the-art products use large-area silicon chips, which have the disadvantage of high cost at low speed; their integration into chipcards is impossible.
The CRYPTOCARD project aims to find new semiconductor-based solutions and to demonstrate the effectiveness of employing a secure chipcard with a dedicated coprocessor for fast asymmetric encryption procedures. This solution will strengthen the use of open system architectures as proposed in the ITHACA projects (2121 and 2705).
For electronic data processing (EDP) the confidentiality and integrity of private messages has to be ensured by authentication means. Symmetric methods are not appropriate for key distribution over large communication networks. However, public key crypto (PKC) systems enable key management. With these asymmetric algorithms only one of two keys is kept secret. Use of a microcontroller and an electrically erasable programmable read only memory (EEPROM) embedded into a smart card is the most secure method of preserving this key. Because of the high computational complexity of asymmetric algorithms, a dedicated crypto-coprocessor was developed. It serves as a high speed arithmetic unit for modular multiplications. The Siemens component SLE44C200 is based on an advanced coprocessor architecture. With 4 cycles of a 140 bit-parallel arithmetic unit (AU) it executes one 540 bit RSA-decryption in about 0.4 s at 3.57 MHz. In 1 um complementary metal oxide semiconductor (CMOS) technology the Coprocessor's chip area is less than 5 square millimetres. For very large scale integration (VLSI) implmentations it is integrated together with a microprocessor (including 256 byte RAM), 8 kilobyte ROM, and 2 kilobyte EEPROM into one single chip. With application specific software the SLE 44C200 becomes a multifunctional processor chip card suitable for a broad range of applications, eg banking card, access control, and Fax. Further flexibility is attributed to a highly regular and modular design. With this property different security levels can be satisfied by an increased key length. A hybrid concept was chosen in order to combine higher baud rates with improved security.
The demand for secure data systems is increasing, and hardware and software protection is needed to improve current passwork solutions. The most modern protection for end to end data or message encryption uses public key methods, as represented by the Rivest-Shamir-Adleman (RSA) or Fiat Shamir algorithms. State of the art products use large area silicon chips, which have the disadvantage of high cost at low speed; their integration into chipcards is impossible. The project aims to find new semiconductor based solutions and to demonstrate the effectiveness or employing a secure chipcard with a dedicated coprocessor for fast asymmetric encryption procedures. Beside the generic information technology, special applications of the chipcard integrated circuit (IC) will be in computer cards and bank cards. One important goal is to achieve high flexibility in that a variety of algorithms (such as public key methods, symmetric methods and zero knowledge algorithms) can be handled by the new chip.
The first silicon of the crypto coprocessor has been successfully tested. The results are: RSA encryption/decryption of 540 bit word length is done in less than 0.3 ms at % MHz internal clock rate. The active area is small enough to use the chip in a chip card. The chips of the coprocessor are available in dual in line (DIL) packages. Crypto IC chips (SLE 44C20) and the emulator and demonstrator hardware and software are available as is a basic application program.
The two main partners (Siemens for the semiconductor work and Bull for the application) will share their experience with all interested partners in the ITHACA team.
The results will be open to the European information industry to set standards for the encryption and for user-friendly software to be implemented on the microprocessor chips. Beside the generic information technology, special applications of the chipcard IC will be in:
- computer cards (access, identification, authentication, electronic signature)
- bank cards (point-of-sale, ATM, home banking)
One important goal is to achieve high flexibility in that a variety of algorithms (such as public key methods, symmetric methods and zero knowledge algorithms) can be handled by the new chip.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware computer processors
- natural sciences computer and information sciences computer security cryptography
- natural sciences mathematics pure mathematics arithmetics
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Data not available
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Data not available
Coordinator
81541 München
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.