Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Predicting odor perception from odorant structure and neural activity in the olfactory system

Objective

The rules linking odor perception to odorant structure are unknown. No scientist nor perfumer can predict an odor based on its molecular structure, or decipher a molecular structure based on its smell. It is this puzzle we aim to solve. In vision and audition coding was probed by linking critical physical stimulus dimensions (wavelength/frequency) to patterns of neural activity. But what are the critical physical dimensions in olfaction? Scientists have probed this by linking restricted physico-chemical aspects of the stimulus, e.g. carbon chain-length, to neural activity. However, the olfactory system did not evolve to decode carbon chain-length, but rather to encode the world around us as revealed in olfactory perception. With this in mind we developed a novel perception-based olfactory space with tangible olfactory axes, based on statistical dimension-reduction of perceptual estimates obtained from humans. In Aim 1 we will test the hypothesis that our generated space predicts olfactory perception in humans. In Aim 2 we will test the hypothesis that our generated space predicts odorant-induced neural activity in olfactory cortex (using fMRI) and epithelium (using novel methods for measurement from human neurons in vivo, methods then further explored as a potential diagnostic tool for Alzheimer's disease). In Aim 3 we will test the hypothesis that our generated space explains neural activity previously measured in the olfactory system across species. In Aim 4 we will use this framework to tune an artificial nose for medical diagnostics. In vision and audition scientists can probe the system within agreed dimensions (color/wavelength; pitch/frequency). Similarly, our proposal generates an olfactory space where one can systematically probe molecular receptor tuning-curves, cellular spatial and temporal coding schemes, as well as higher-order perception. In other words, we propose a common framework for olfaction research.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

WEIZMANN INSTITUTE OF SCIENCE
EU contribution
€ 1 596 000,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0