Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Physiological Interactions between Marine Cyanobacteria and their Viruses

Objective

Viruses (phages) influence many aspects of microbial processes including the population dynamics, diversity and evolution of their hosts. Yet we know practically nothing about the physiological interactions between hosts and phages during infection even though it is the outcome of these very interactions that affects the above-mentioned processes. Using marine cyanobacteria as a model system I propose to study the physiological interactions between ecologically important microbes and the phages that infect them to gain an understanding of the mechanisms through which they impact microbial ecology processes. Cyanobacteria are an important component of marine phytoplankton and contribute significantly to primary production in vast regions of the world’s oceans. The specific objectives of this proposed study are to: (1) Identify phage genes involved in taking over host metabolic processes; (2) Assess the fitness advantage to the phage provided by bacterial-like genes in phage genomes; (3) Develop a genetic manipulation system for cyanobacterial phages to determine the function of genes in (1) and (2); (4) Discover genes functioning in host defense mechanisms in diverse cyanobacterial-phage systems using whole-genome expression analysis and the generation of phage resistant strains; (5) Determine the impact of genes identified in (4) above on host fitness and phage development during infection. Discovery of the mechanisms employed by phage for taking over host metabolic processes and the defense mechanisms set into motion by the host to overcome phage infection will provide insight into how such interactions influence the diversity and evolution of both cyanobacteria and their phages. Furthermore, this study has high potential for uncovering new bacterial defense mechanisms as well as the discovery of novel viral mechanisms for shutting down bacterial metabolic processes, both of which may also have future practical applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
EU contribution
€ 1 582 200,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0