Skip to main content

Heterostructure-defined electron waveguides for quantum-based switching applications

Objective

This project is divided into two phases. Firstly the assessment period during which we will consolidate crucial lithography, etching and growth technologies by fabricating samples containing quantum-point contacts with characteristic dimensions less than 40 nm. The systems for evaluation will be overgrown and gated AlGaAs/GaAs and InGaAs/InP samples. We expect coherent transport to be observed in the test systems at temperatures above 4 K, i.e. at temperatures above that of liquid helium. This would indicate a potential for much higher operating temperatures in the devices, based on the assessed technology, that would be fabricated during phase two.

The focus of this proposal is on the realisation of transport by coherent electron waves in channels defined by regrown semiconductor heterointerfaces. Quantum interference phenomena will govern the functionality of the proposed types of devices. By introducing large lateral quantization, operation at elevated temperatures would be possible.

The quantum electron device has the potential of radically changing present circuit concepts. Such devices operate with active areas of nm-scale dimensions. Packing densities will be high, with extremely high maximum rates of information transfer. Electron coherence has so far normally only been observed at temperatures well below that of liquid helium, due to small characteristic quantization energies for the electron states, as determined by sample architecture. By using semiconductor alloy heterostructures of nm-scale to define potentials vertically as well as laterally it may become possible, with some refinement of technology, to achieve laterally confined electron states with characteristic energy spacings large enough for operation at room temperature. This would transform electron wave guide devices from being exciting objects of study by physicists at mK-laboratories, to being high-performance nano-electronic devices operating at elevated temperatures, with a potential of commercial break-through at the beginning of the next The focus of this proposal is on the realisation of transport by coherent electron waves in channels defined by regrown semiconductor heterointerfaces. Quantum interference phenomena will govern the functionality of the proposed types of devices. By introducing large lateral quantization, operation at elevated temperatures would be possible.

The quantum electron device has the potential of radically changing present circuit concepts. Such devices operate with active areas of nm-scale dimensions. Packing densities will be high, with extremely high maximum rates of information transfer. Electron coherence has so far normally only been observed at temperatures well below that of liquid helium, due to small characteristic quantization energies for the electron states, as determined by sample architecture. By using semiconductor alloy heterostructures of nm-scale to define potentials vertically as well as laterally it may become possible, with some refinement of technology, to achieve laterally confined electron states with characteristic energy spacings large enough for operation at room temperature. This would transform electron wave guide devices from being exciting objects of study by physicists at mK-laboratories, to being high-performance nano-electronic devices operating at elevated temperatures, with a potential of commercial break-through at the beginning of the next

Funding Scheme

ACM - Preparatory, accompanying and support measures

Coordinator

Lund University
Address
Paradisgatan 5
S 221 00 Lund
Sweden