Objective
This proposal aims to realize physical systems for the realization of plasmonic cavity quantum electrodynamics using optically active diamond-based quantum systems such as atomic impurities. Color centers in diamond provide a suitable test bed for applications of quantum information processing, as well as selected spin-spin interactions. While there are hundreds of known color centers in diamond, but only one (Nitrogen vacancy) is studied extensively. We will study optical properties and identify energy levels of alternative color centers both naturally occurring and artificially implanted, potential candidates being Ni, Si, or Fe impurities. We will in parallel study solid-state-based cavity QED with light confinement at sub-wavelength scale. Using metal nanostructures and plasmons, we aim at achieving individual or ensemble strongly coupled emitter-cavity systems. Further, we will study how sub-wavelength structures of a medium alter the material-based properties, so the optical fields can experience exotic media with negative refractive indices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologymaterials engineeringcolors
- natural sciencesphysical sciencesquantum physics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
You need to log in or register to use this function
Keywords
Call for proposal
ERC-2007-StG
See other projects for this call
Funding Scheme
ERC-SG - ERC Starting GrantHost institution
CB2 1TN Cambridge
United Kingdom