Objectif
ALEF's objective is to enable the European aeronautical industry to create complete aerodynamic models of their aircraft based on numerical simulation approaches within the respective development processes. I.e. ALEF will kick-off a paradigm shift from greater confidence in experimentally measured loads data to greater confidence in computational results. Beyond the scope of ALEF this paradigm shift will essentially influence the overall aerodynamic development process. The objective has three aspects: 1. Comprehensiveness refers to the ability to predict aerodynamic forces, moments and their derivatives in time for any point of the flight regime. It is addressed by two complementary approaches: A high fidelity CFD based approach serves short-term impact. Long-term improvements are delivered by incorporation of simulation tools of different fidelity. 2. Quality refers to the accuracy and physical correctness of each flow simulation result used for aero data prediction as well as to a high coherence of aero data integrated over the complete flight envelope from tools of varying fidelity. It is improved by considering the impact of physical modelling as well as novel quality control means to achieve a highly coherent data space representation. 3. Efficiency refers to the necessity to compute the entire aero data space within time frames dictated by industrial design processes at given costs. It is tackled by means of surrogate models for both steady and unsteady flows. Also planning techniques for efficient simulation campaigns are addressed. The ultimate scope of using simulation tools in aero data generation is to cover all flight conditions and configurations by means of a numerical toolbox. This would ensure an up-to-date and fast estimation of most recent statuses of aircraft with every data consistent. ALEF will essentially contribute to a 70% wind tunnel testing cost reduction by 2020, which will cut the aerodynamic development effort by about 40%.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaircraft
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaeronautical engineering
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Appel à propositions
FP7-AAT-2007-RTD-1
Voir d’autres projets de cet appel
Régime de financement
CP-FP - Small or medium-scale focused research projectCoordinateur
31060 Toulouse
France
Voir sur la carte
Participants (19)
28906 Getafe
Voir sur la carte
21129 Hamburg
Voir sur la carte
00195 Roma
Voir sur la carte
28906 Getafe (Madrid)
Voir sur la carte
31057 Toulouse Cedex
Voir sur la carte
08034 Barcelona
Voir sur la carte
81043 Capua
Voir sur la carte
75008 Paris
Voir sur la carte
51147 Koln
Voir sur la carte
82024 Taufkirchen
Voir sur la carte
86609 Donauworth
Voir sur la carte
164 90 Stockholm
Voir sur la carte
100 44 Stockholm
Voir sur la carte
1059 CM Amsterdam
Voir sur la carte
91120 Palaiseau
Voir sur la carte
10121 TORINO
Voir sur la carte
00185 Roma
Voir sur la carte
6032 Emmen
Voir sur la carte
581 88 Linkoping
Voir sur la carte