Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-20

Non-linear optical response from first Principles

Objective

The materials with strong nonlinear optical (NLO) response are nowadays widely used in many essential devices of telecommunication and information technology. So far the new NLO materials have been usually discovered via tedious and expensive process of trial and error. Deeper molecular level understanding of various effects and processes responsible for making a good material can lead to major technological progress. It was not until recently that such issues could be addressed by computational approach. Developments in computer technology and in plain wave density functional theory (CASTEP package), have made it possible to predict NLO properties of crystals with reliable accuracy. It has led to better understanding of optical and mechanical properties of many popular NLO materials. On the other hand the NLO spectroscopy methods are frequently used in basic and applied research for their rich information content about electronically and vibrationally excited states and dynamics in molecular systems. In the host department the NLO methods like pump-probe spectroscopy and photon echo are used to study ultra fast processes in many different systems: light harvesting pigment protein complexes, conjugated polymers, supramolecular complexes for artificial photosynthesis etc. In complex systems it is often a major challenge to disentangle the experimental NLO observables in terms of elementary molecular level processes. We use quantum chemistry calculations and computer modelling to better understand what the experimental data means. The aim of the research project is to combine the experience obtained in the research of NLO materials and the NLO methods. The common ground of the two approaches is a nonlinear optical response of a molecular system. In the framework of the project we will use the knowledge what has been obtained by using CASTEP with our expertise in NLO spectroscopy in search of new promising NLO materials and deeper understanding of NLO spectroscopy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-MOBILITY-7
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinator

LUND UNIVERSITY
EU contribution
No data
Address


Sweden

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0