Objectif
The electric ship concept offers many benefits; among other aspects if offers flexibility of control and effectiveness of power transmission. But predominantly it enables higher energy conversion efficiency by ensuring that prime movers are effectively loaded at all times and across all operating conditions. This dominating advantage cannot be matched by mechanical transmission systems because gearboxes offer little chance of integrating a high number of prime movers in the restricted space of a ship whereas this integration is straight forward when managed electrically. Thus the electric ship concept offers reduced emissions through improved efficiency of engine operation but critically it offers significant reduced emissions during the critical phase of entry to littoral water when with speed generally reduced engines in a mechanical systems become very lightly loaded.
It is proposed to enhance the electric ship concept so it suits a wider range of vessels than currently. The principal barrier to adoption of the electric ship concept in merchant ships is the size of the equipment. However if size reductions can be achieved then adopting the electric ship concept in a wider range of merchant ships will, as described above, reduce emissions and improve the impact on global warming. Overall this impact will be significant given the current and anticipated levels of global trade and the proportion to be moved by sea transport.
This challenging ambition, to enable the adoption of the electric ship concept in a wider range of merchant ships, will demand the development of new technologies across all of marine electrical engineering:
1. High Temperature Superconductivity (HTS): This is a technology that allows smaller principal electrical components and an increase in efficiency.
2. Wireless monitoring: This provides simpler internal control communication and enables the adoption of more advanced control regimes (as offered by the electrification of propulsion).
3. Harbour Shore Electrical Supplies: Running lightly loaded generators in harbour - as is commonly the practice among merchant ship operators - threatens the environment in a sensitive zone. The lack of any propulsion load prevents loading the generators more effectively. The answer is to supply the ship with electricity from shore connections. This does not need technological innovation but the widespread adoption of shore supplies demands standardisation among connectors and mode of electrical supply that has yet to be investigated.
4. Electrical actuation: This is a technology which aims to replace mechanically actuated auxiliaries by using direct electrical actuators and reduces size, cost, maintenance and improves efficiency
The benefits of these proposed innovations will be tested by developing designs for specific ship types: multi-purpose, cruise and container. The integration process will be composed of 6 steps:
1 Ship mission
2 Energy consumers
3 Draft design
4 Performance simulations
5 Final design
6 Environmental impact.
To reduce costs only the design for the multi-purpose ship will be taken through all the six steps. The remaining 2 ship types will only be taken through steps 1 to 3.
Finally, the innovative HTSC technology will be demonstrated in a land demonstrator, scaled as much as possible to reduce costs, while retaining relevance of the demonstration to full scale implementation. This demonstrator will include: the propulsion system, including an HTSC propulsion motor and its power converter, a DC distribution system with innovative protection and an HTSC segment, and various auxiliary loads.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
Mots‑clés
Appel à propositions
FP7-SST-2007-RTD-1
Voir d’autres projets de cet appel
Régime de financement
CP-IP - Large-scale integrating projectCoordinateur
TW11 8LZ TEDDINGTON
Royaume-Uni
Voir sur la carte
Participants (33)
Participation terminée
93170 BAGNOLET
Voir sur la carte
44150 SAINT HERBLON
Voir sur la carte
28203 Bremen
Voir sur la carte
1040 BRUXELLES
Voir sur la carte
92200 NEUILLY SUR SEINE
Voir sur la carte
CV21 1BU RUGBY, WARWICKSHIRE
Voir sur la carte
75015 Paris
Voir sur la carte
1363 Hovik
Voir sur la carte
75008 PARIS
Voir sur la carte
59460 Jeumont
Voir sur la carte
6708 PM Wageningen
Voir sur la carte
29000 QUIMPER
Voir sur la carte
53115 Bonn
Voir sur la carte
NE1 7RU Newcastle Upon Tyne
Voir sur la carte
92400 Courbevoie
Voir sur la carte
Participation terminée
5330 Munkebo
Voir sur la carte
DE24 8BJ Derby
Voir sur la carte
92300 Levallois Perret
Voir sur la carte
22763 HAMBURG
Voir sur la carte
44340 Bouguenais
Voir sur la carte
Participation terminée
92110 CLICHY
Voir sur la carte
Participation terminée
53359 RHEINBACH
Voir sur la carte
35760 Saint-Gregoire
Voir sur la carte
30179 Hannover
Voir sur la carte
98693 Ilmenau
Voir sur la carte
FIN-65101 VAASA
Voir sur la carte
2595 DA Den Haag
Voir sur la carte
20457 Hamburg
Voir sur la carte
44600 Saint Nazaire
Voir sur la carte
4381 NK Vlissingen
Voir sur la carte
Participation terminée
75015 PARIS
Voir sur la carte
Participation terminée
20459 Hamburg
Voir sur la carte
44100 NANTES
Voir sur la carte